J Supercomput (2018) 74:1715-1764 @ CrossMark
https://doi.org/10.1007/s11227-017-2191-7

A mathematical model to calculate real
cost/performance in software distributed shared
memory on computing environments

Ehsan Mousavi Khaneghah!@® - Nosratollah Shadnoush? -
Amir Hossein Ghobakhlou!

Published online: 16 November 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract One of the important factors in high-performance computing (HPC) is the
cost/performance ratio. Calculation of cost/performance ratio is the main criterion for
the separation of hardware computing systems (supercomputers) from software com-
puting systems (Cluster, Grid, Peer-to-Peer). There are various economic methods to
calculate hardware cost. In addition, there are numerous methods in software engineer-
ing to calculate the cost of developing and programming the scientific and engineering
software. The computing power in the aforementioned systems is basically calculated
with programs like LINPACK and HPCL. The inter-process communication is consid-
ered as a variable in calculating the cost of executing the scientific programs, whose
nature and amount depends on the program execution itself. As there is a high depen-
dency of effective variables in cost calculation of inter-process communications during
the program execution, it should be used for calculating the cost of any application.
This paper complements the existing methods by presenting a more comprehensive
and accurate method to calculate the real cost of distributed shared memory (DSM)
mechanisms used by HPC Systems. Therefore, a systematic method has been used to
achieve a whole equation for DSM costing, determine the effective factors of the cost,
and propose a method based on costing economic methods. Effective parameters are
classified into two groups, namely DSM-inhere dependent and application-specific

B<1 Ehsan Mousavi Khaneghah
EMousavi@ Shahed.ac.ir

Nosratollah Shadnoush
Nosratollah.Shadnosh @ Gmail.com

Amir Hossein Ghobakhlou
Amirh_gh@Outlook.com

Department of Computer Engineering, Faculty of Engineering, Shahed University, Tehran, Iran

Department of Management, Faculty of Management, Central Branch, Islamic Azad, Tehran, Iran

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2191-7&domain=pdf
http://orcid.org/0000-0002-4692-8010

1716 E. M. Khaneghah et al.

dependent parameters. Each parameter is presented and discussed, and the correlation
between them specifies the system’s weight on DSM real cost according to which the
cost is modeled and validated analytically.

Keywords Distributed shared memory (DSM) - Cost model - High-performance
computing (HPC) - False sharing - Correlation

1 Introduction

One of the important factors in high-performance computing (HPC) is the cost/perfor-
mance ratio [1,2], which acts as an economic justification for running scientific
program on HPC systems. At times, these systems can handle an execution of a
scientific program, but they lack economic efficiency. This cost/performance ratio
parameter specifies the type of scientific program that can run in HPC systems like
Cluster, Grid, and Peer-to-Peer (P2P) [3].

There are varied ways to calculate this ratio. For instance, Zhang et al. [4] and
Kurmann et al. [5] investigated this ratio in network interconnections to specify its
importance in low-end networks in cluster systems. Rauber et al. [6] and Tootaghaj
et al [7] also studied on how to obtain cost/performance trade-offs by developing a
simple parallel benchmark model.

In HPC systems, some mechanisms are used for measuring the system efficiency
[8-10], which challenges the patterns of measuring the system cost in computing the
cost/performance ratio. The cost of a system is likely to be dependent on the efficiency
and nature of the system that defines the methods used for the calculation of execution
cost in computing systems like Cloud or Grid [11,12].

Calculating the cost of these systems is the main challenge in the cost/performance
ratio evaluation. To understand the cost calculation of a system, the cost involved
in the execution of applications in HPC system should be understood followed by
the mechanisms used to calculate the cost. After the completion of the survey, two
methods or solutions have been formulated to calculate the cost in HPC systems.

The first solution is the mathematical model of calculating cost and efficiency of
each scientific program or computing system management application or any special
feature of the computing system [7,12,14]. This method is called as minor fee calcu-
lation because of its cost that is implemented on the basis of each specified element
or content.

The most important feature of the minor fee calculation is the process of using
program execution for the calculation of cost and the cost/performance ratio. In this
method, the general mechanism of cost extraction is based on a scientific program (or
specific program) that is run in a specified computing system. Some of the system
elements or features cause the cost, which is calculated during the application of
the running process. The most important advantage of this method is the feature of
proposing the exact cost of a program execution in certain computing systems [1].
The focus of this method is to recognize the element or feature of the system that
causes the cost creation during the program execution. In this method, each element
or feature causing the cost creation is surveyed independently, which gives a precise

@ Springer

A mathematical model to calculate real cost/performance... 1717

vision on why the certain feature causes cost creation. This method not only helps in
understanding the communication of program, system, and cost but also the behaviors
of the feature of cost creation in different runs. Calculation of each factor of cost
creation independently causes a lack of vision on their influence on each other. The
most important challenge is that there is no general pattern in the survey process of
these factors or definitions of cost creation. If the cost creation parameters, obtained
from the scientific programs, changes then there will be no certain decision about the
reuse of the obtained parameters.

The second solution is using a public pattern to calculate the cost and mentioned
coefficient in computing systems [15—18]. In this public method of cost calculation
in a computing system, the calculation is based on “a basic content,” which can be a
defined content in the system or by the user. Elements like the time of system used,
system creation cost [12], power [19], and data can be considered as the basic content
of cost calculation in the system. When an element is known as a basic content of
cost calculation, it must be redefined based on an axial element in each system. The
activities caused in each element or features in a system lead to cost creation, which
is further redefined based on the fundamental activities defined for the axial element.

Based on the classic patterns of costing, except operational or fixed cost calculating
method and variable costs, efforts are made to know the effective elements of cost
creation in a computing system. As a result, the communication between effective
elements on cost is specified. In cost calculation method, the most important content
is clearly understanding and correct selection of the axial element.

Based on the fact that a classic cost computing pattern is generally used, the main
activity defines the axial element. If not chosen correctly, the parameters of the axial
element affecting the cost could not be considered. Moreover, the parameters that do
not affect the costing of this element or define other elements might be considered as
an activity during the survey. Hence, there is a need to understand the exact meaning
of axial element and defining the other elements and existing activity in a system.
However, defining the cost based on an axial element causes the exact pattern to
calculate the costing that would redefine its activities and elements.

On the other hand, there is a need to have a clear knowledge about the cost of
running a program in an HPC system and what elements are involved in it in order
to calculate the exact cost. In a general overview, the cost of executing a program in
HPC system is followed by the system creation cost, designing cost, scientific software
development cost, system management software cost, and the cost of the mechanism
that is used for converting the scientific program to a parallel and distributed program
[1]. There are many economical ways for calculating the cost of a system creation,
even the cost created by the depreciation of system is included. On the other hand, the
development cost of scientific software can be calculated by the existing methods in
software engineering. The cost of purchasing or developing the system management
software can also be calculated in this way. Calculating the cost of the mechanism of
converting a scientific program to a parallel and distributed one, a different approach
is required. This involved the nature of the cost depending on the execution of the
process of global activities during the running time, and it shows the cost of process
distributed in the computing systems.

@ Springer

1718 E. M. Khaneghah et al.

For calculating the cost of inter-process mechanism in computing systems, it should
be enabled to answer the questions like ‘“What kinds of dependency are present in
between the processes? How does the displacement and distribution of processes
occur in running time? Moreover, the critical question is “What kinds of faults affect
the cost calculation during the distributed and parallel execution of processes.’

One of the most important questions that should be answered while calculating the
inter-process cost in computing systems is the cost calculation pattern. In this paper,
the public pattern for calculating the inter-process communication (IPC) cost is used
for which there is need to consider the method as a cost calculation benchmark among
the other methods of IPC.

Distributed shared memory (DSM) and message-oriented middleware can be used
as two mechanisms for the distributed IPCs to convert the program from a scientific
one to a distributed one. In this paper, the main focus is on DSM mechanism, which
provides a probability of IPCs between remote processes as well as the local shared
memory.

If the cost of running the scientific program on HPC systems like Cluster, Grid, and
P2P Systems are to be calculated, there will be a need to calculate the cost of DSM
mechanisms used to setup the HPC Systems.

In one of the solutions proposed by Kaplan et al. [20], the cost of a system is
calculated on the basis of its activities and by observing each activity. The cost of its
effective elements is derived and calculated to find the best combination of its effective
elements and improve the costing [1].

The other popular solution is analyzing the elements of the system based on their
functionality with the approach of calculating their execution cost imposed by the
system along with the cost effectiveness for each element [21,22]. This solution is
popular in management, decision-making, as well as its decomposition and analysis.
The most popular solution is based on the system synthesis and has a special approach
to complex issues as sets of variables and their reactions. The main difference of this
solution with the previous one is related to its attention to reaction and interaction of
the elements. For instance, Berriman et al. [23] tried to survey the cost and efficiency
contents in Astronomy software in Cloud computing systems. In this paper, each
activity that causes cost creation in the execution of the scientific program has been
calculated for each program. The cost calculation in this paper is performed to know
the effective factors on cost per specific scientific program in a specific computing
system. In the study by Deelman et al. [24], information transferring cost has been
considered as the only parameter in a computing system. In Expdsito et al.’s [1] paper,
the operations execution cost has been considered in Cloud computing systems and
also in the scientific programs. In the study by Han et al. [13], the cost of using
the computing system per special kind of scientific program has been surveyed, and
the costing mechanism has been used in finding a solution for allocating the efficient
resource. Zhai et al. [25] introduced the cost of execution on Cluster systems and Cloud
computing systems as the model used for costing. Therefore, the general mechanism
involves the cost calculation of the program execution on Cluster and Cloud system.
There is no public model for calculating the cost, but the cost of each element or feature
causing the cost creation during program execution has been calculated independently.

@ Springer

A mathematical model to calculate real cost/performance... 1719

In the studies by De Alfonso et al. [19] and Woitaszek et al. [26], an economical
method is used for calculating the cost of the computing system. In De Alfonso et al.’s
[19] study, a public method is proposed for calculating the energy cost for users to
transfer from Cluster computing systems environment to Cloud computing systems.
The most important advantage of this method is the consideration of a public model
to assess the effective factors in the cost creation of Cluster computing systems. For
the calculation of this cost, the general methods have been used in consideration with
the fixed and variable costs. The effective elements on fixed and variable costs have
also been proposed about energy consumption, which has also been used in Cloud
computing systems. The used costing method is a breakdown of fixed and variable
cost methods. In this method, it is supposed that the total cost is equal to the fixed and
variable costs, and the solutions use the economic pattern to evaluate the cost benefit
of the public pattern of cost calculation. In this paper, the public pattern and classic
models have been used to calculate the cost of DSM.

Based on the synthesis solution for cost calculation of the cluster, the hardware,
system software, and application are the three cost generator sub-systems. Hardware
and system software cost is obvious in the system because the provider of the cluster
system pays it directly.

In this paper, a mathematical model is presented to calculate the cost of DSM
instructions as a global model based on the synthesis solution. Considering the DSM
program as a systematic program, old methods were used for the calculation of the
cost creation and DSM mechanism.

DSM has two essential characteristics, i.e., hiding the complexity of the underlying
platform (transparency) and limitless usage of the beneficiary machines in executing
the instructions on it. In the traditional programming pattern, programmers focus on the
scientific program theories, their details, and their complexities by using local mem-
ory. The memory manager controls the read, write, consistency, and data movement
between the processes and operations. In the DSM pattern, programmers only focus
on the challenges of parallelism concept of scientific programs to develop efficient
software programs [27]. By this description, the cost calculation of DSM instruction
is a significant challenge in scientific computing systems like Cluster, Grid, and P2P
systems. Therefore, a mathematical model is presented for calculating the real cost
of DSM based on the synthesis solution in computing environments. The functions
involved in calculating the DSM cost for any scientific program and computing system
can also be used.

In this paper, each parameter’s relation with DSM real cost is obtained, and the
amount of each parameter’s influence on the cost is specified by a variable denoting
the weight of the parameter, thereby representing the DSM real cost in an analytical
manner. Satisfied function has been used for the calculation of the effective coefficient
of each cost part on total cost. For extraction of the coefficient of each cost part,
considering total cost as an independent variable, component cost as the dependent
variable, and adopting statistic distribution as the mentioned function, efforts are made
to define the satisfied function between dependent and independent variable.

Given the process of calculating the DSM real cost discussed in this paper, it is
possible to choose the best strategy in different situations based on its cost. If the cost
of other IPC mechanisms is available, it is possible to compare it with the DSM real

@ Springer

1720 E. M. Khaneghah et al.

cost to choose the mechanism with the lower cost. There is a metric approach in this
paper, and the principles and methodologies of accounting and management sciences
are used to calculate the real cost [28,29].

In biological systems (P2P and Grid), determination of the communication mech-
anism used between the present system and added machine by Resource Discovery is
a critical subject. The use of IPC mechanism results in the cost creation of the system.
When Resource Discovery tries to find a machine in a network (which has the required
resources), the system tries to create IPC between the system and the machine. If there
are no calculating tools for the cost of using the [IPC mechanism in this system, the
cost/performance coefficient will not be meaningful.

In this paper, cost accounting theory [30,31] is used as a model for the calcula-
tion of the real cost/performance in software DSM on computing environments. Cost
definition is based on cost definition [32] and resource consumption.

The second section presents the related works of DSM, followed by the third section
that discusses the real cost of application specific dependent parameters. The fourth
section presents the case study, and the fifth section concludes the findings of the

paper.

2 Related works

Parallel processing has been widely used and enriched by HPC community over the
past years in basically two categories, namely shared memory and message passing,
at the developmental and programming levels. Shared memory can be accomplished
using small-scale symmetric multiprocessors effectively, generating low-end parallel
systems that serve as higher-performance systems [4].

Shared memory, however, is increasingly popular in the mid-range world. Sun,
IBM, HP, and SGI are vendors that scale to a few hundreds of processors. These
machines have significantly higher per-processor costs than smaller symmetric multi-
parallel (SMPs) ones. Consequently, to decrease computing cost, many companies
prefer to deploy clusters of SMPs, with low-latency networks and high-bandwidth
connections, when such replacement is accessible for their applications [33]. Com-
munication and data sharing between SMPs in HPC (Like Cluster, Grid, and P2P)
need IPC mechanisms, including message-passing mechanisms [34]. Nevertheless,
programmers have to take care of data distribution across the system and manage
complex communications due to different address spaces, process migration, and other
issues [35]. The intermediate solution that combines the advantages of both of them is
the best approach. Therefore, DSM mechanism is proposed in which message passing
is hidden by avoiding explicit sending of messages between processes at the program
level.

DSM mechanisms consist of different protocols, which have been developed with
various implementation viewpoints. Due to the importance of the cost problem, some
works found in the literature [33,36—42] specify whether distributed IPC or DSMs
is more cost-effective in message-based systems. Some of these works estimate the
cost of DSM based on the number of additional messages or the number of memory
accesses.

@ Springer

A mathematical model to calculate real cost/performance... 1721

DSM performance is dependent on the memory access behavior of the application.
For instance, previous studies [40,43] have presented a cost model for a special kind
of DSM that uses competitive-update protocols. These protocols are a kind of memory
access that calculates the number of updates in each segment by a probability den-
sity function; these also calculate message-passing overhead and the cost of message
passing of a base message size. They represent an adaptive DSM base and the compet-
itive protocols required to minimize a predefined cost function, which is the number
of messages and the amount of data transfer. Finally, they show that performance is
improved by dynamically selecting a suitable protocol.

Studies [43—46] have shown that DSMs involve the use of average memory access
costs, the number of nodes, sending packet costs, the probability of fault and ratio of
reading and overwrite.

SMP clusters are cost-effective solutions to building large-scale parallel machines,
but for fine-grain application, SMP clusters have poor performance and low
cost/performance ratio [46—48].

Existing studies on estimating the cost of IPC mechanisms, including DSM,
are either biased to specifics of their problem specifications or only account for
less effective parameters on DSM real cost to make their calculations simpler,
helping the less accurate calculations. All effective parameters are identified and
described in details, and subsequently, the weights of their influence on DSM real
cost as well as their influence on each other, i.e., their relations, are determined by
using the normal distribution. Granularity is considered as an important effective
parameter of DSM real cost. A coefficient named clustering coefficient is also pre-
sented.

Studies [49-52] have presented a middleware for the proposed DSM system in
wide area networks. Musical et al. [53] proposed that the DSM uses three effective
parameters for cost, namely component cost, agreement protocol cost, and update cost.
The number of nodes, the number of requests, and system configuration influence cost
update and are related to the sequential consistency model of the proposed DSM.

Kim and Vaidya [54] and Gray [55] introduced an approach to have highly available
access to DSM data with low operation cost. Their research is based on a class of
coherent protocols for DSM, named competitive-update protocol. They have divided
requirement operations in this protocol to three parts, namely creation, read, and write
operations; all these operations affect the cost. They tried to decrease the number
of these operations by monitoring the workload of the system and adjusting certain
protocol parameters to have minimum page data availability of DSM and induce a
decrease in operational cost.

In a previous study [56], a model for analyzing the DSM cost has been proposed
based on the axial element of competitive update. In this model, DSM pattern for data
management is based on Segment. In this paper, probability density function is used
for calculating the DSM cost.

The proposed model is a probable model for calculating the cost in DSM per occur-
rence of a special kind of update related to a segment between two creator machines
of DSM. The most important advantage of this method is analyzing DSM cost based
on an event which happens again and again in a system based on DSM, especially in a
computing environment. The focus on special kind of updating means that all possible

@ Springer

1722 E. M. Khaneghah et al.

spatial modes in the system are being surveyed because of the occurrence of the events
in the proposed model. The most important limitation of this paper is not surveying
the other factors affecting DSM cost.

In a DSM system in which data is an axial element, there are other elements that
create cost based on data and defined activities for the data element. The cost assess-
ment mechanism of this paper is a conventional mechanism for assessment. The main
assumption of the evaluation method of the proposed model is that the proposed model
should describe the costs according to the real world in which the DSM system man-
ager works.

A previous study [57] proposed a general framework for surveying the costs in
a high-performance Cloud computing system. The cost extraction pattern in this
method was based on the public pattern. The proposed framework included five
elements related to the cost of using Cloud computing systems; based on these
parameters, a prediction is proposed. The used pattern in this method can be used
in any computing system considering the special features of the computing sys-
tem. The most important advantage of this method is that the proposed analysis is
based on recent information and creation of knowledge-based structure. In frame-
work architecture, based on the present mode and obtained information, a prediction
is proposed about the cost of using the resources. The most important challenge
of this field is that no entry is related to the cost of creation, management, and
maintenance of HPC systems. The reason is Cloud computing system. Anyway,
the main mechanism of this method is that the cost of using HPC is based on
pay-as-you-go, and there is no surveying of the elements related to costs in the
system; the only thing proposed is the prediction framework about the cost of used
resources.

There are some solutions to calculate the cost of applications such as using a line
of code (LOC) metrics [58] and assigning a cost coefficient to each line based on its
complexity. Indeed, this solution is based on decomposing and analysis.

There are two fundamental problems in using LOC metrics for DSM. First, the
assigned cost coefficient to each line is considered individually based on its execu-
tion complexity on the processor without any attention to the relation between the
lines of codes and their reaction and influence on each other. The second problem is
related to the lack of attention to global operations in executing the applications on
the cluster system. There are some parts in Cluster-based applications in which the
global operations are executed. Calculating these lines’ complexity is difficult due
to the dependence of lines execution on the machine. On the other hand, deriving
the complex nature of these codes has a direct relation to their transparency, and by
increasing their transparency, the complexity of calculating the hidden cost increases.
Therefore, due to its complexity, the decomposing and analysis approach is rarely
used for calculating the cost. In contrast, synthesis is used more often as a method for
calculating the cost.

One of the used mechanisms in computing systems for calculating the IPC mech-
anism cost is USD per GOPS [1,59]. It means the cost of Giga Operation per Second
execution. This cost can be calculated in systems in which the process units are rented
by the user. In this method, the cost of process unit execution is considered in specific
period than the number of operations in time unit as cost criterion of using the process

@ Springer

A mathematical model to calculate real cost/performance... 1723

units. This method is the minor cost calculation method. The specific factor of this
method is the cost of using the CPU. CPU using cost and the number of executable
operations are two units which are specified by CPU. These two elements can only
calculate the total cost of CPU and cannot calculate the details of cost and details
of computing program execution cost. Therefore, they are used for the computing
systems that are not created and maintained by the customer. The customer in such a
system can only rent the computing system in order to run the specific program (or
programs). So, if the creator of the system wants to extract execution cost of computing
program, USD per GOPS content will not be used.

2.1 Review of distributed shared memory based on system approach

Since the cost of DSM is due to different machines and elements of the system and
because of DSM transparency, it is not possible to clarify the role of each element in
increasing the cost of DSM. Therefore, a systematic approach is needed to know the
real cost of DSM to give an integrated viewpoint.

There are two approaches to understanding the problems: reductionism and system
approaches [60].

In the system approach, the focus is on arrangement and relation between the parts
and how they work together as a whole. This approach in modeling the cost of DSM
gives some advantages too; the first one is the independence of the model to specific
implementation and details.

This model can be applied to specific implementation by changing the coefficients as
itis based on DSM mechanism. The second one is deriving the fundamental and general
operations of DSM and applying the influence of them in the cost model of DSM. The
third one is the consideration of the correlation of internal system reactions. The fourth
is the consideration of the effects of hardware, system software, and applications on
DSM cost.

The important problem in this state is finding a classic system to adapt DSM as
a basic system and describing DSM costs. According to the nature of DSM, there
are different systems such as supply/demand that are considered as the basic system.
However, by investigating the nature of DSM, it can be concluded that DSM acts as a
production line [61,62]. There are producer processes that give some data to DSM to
transfer, and there are consumer processes that use the data. Figure 1 shows the logical
and simple view of DSM as a production line. Therefore, DSM can be assumed as a
production line system to get a cost model for it.

[,:> Distributed Shared Memory J

Producer
Process

Consumer
Process

Fig. 1 Distributed shared memory definition based on production line

@ Springer

1724 E. M. Khaneghah et al.

As shown in Fig. 1, a one-to-one relationship between DSM in HPC and production
systems can be without loss of generality.

In this paper, based on the system approach, the cost-effective operations in DSM
are categorized so as to cover all fundamental operations of DSM and reach an accurate
cost model.

Regarding this relationship, a decision about two issues can be made. (a) Which
general parameters are considered as effective parameters in the cost of production
system? Moreover, how these parameters affect each other and environmental param-
eters. (b) Some parameters, considered as basic parameters of the system, i.e., caused
by the basic purpose of the system, are produced, and their impact on the real cost of
using DSM is obtained.

2.2 General parameters of cost in DSM system based on system approach

Operational costs and activity costs [30] of systems are two parameters of the produc-
tion line. Operational costs are set by costs involved in enabling a system to perform
duties, which were determined in its purpose. As it is predictable, the costs of running
activities in a system are called activity costs.

There are more exact patterns to differentiate between operational costs and activity
costs. There is a general definition for operational costs that should be redefined by
the system.

Operational costs of a system include sets of its creation, its maintenance, and
execution of operations in the system. It is necessary to notice that the third set of
operational costs refers to what cost should be paid for running activities in the sys-
tem. Activity costs refer to what costs might be raised by the system while running
activities.

Each of these costs is defined based on the parameters and variables of the sys-
tem. One of the most important features of operational costs is to recognize relations
between parameters creating cost in a system with each other and with system’s
environment. On the other hand, inherently activity-based costs are to a great extent
dependent on activity, the basic purpose of the system and the set of activities that
should be run in the system to reach its final goal.

Some effective parameters on DSM real cost are considered and divided into two
general groups, namely DSM-inhere dependent parameters whose details have been
published in a previous study [63] and application-specific dependent parameters.
However, the application-specific dependent parameters are investigated with more
details.

On the other hand, these sorts of costs are operational costs of DSM. Based on the
communication between operational costs and activities costs, the nature of operational
costs will be corrected after determining the operational costs. On taking a look at the
nature of operational cost, it is obvious that operational costs must (A) communicate
with the activities of the system in running time and (B) these costs must affect
operational costs.

As mentioned before, there are two general groups of costs defined in DSM systems
based on the production line model. These groups are named operational costs of

@ Springer

A mathematical model to calculate real cost/performance... 1725

DSM system or costs caused by the distribution of the shared memory system (same
as production system) and activity costs caused by execution of application programs
on DSM system.

It should be noticed that the final goal of a DSM system is the execution of sci-
entific programs, which need memory-based out-of-machine IPCs. Execution of such
programs on DSM causes some costs, which is in line for reaching the final purpose
of the system.

In a previous study [63], it was shown that DSM production and usage costs in HPC
systems are categorized into three general levels in which their variables and reactions
to each other and system-environment issues have been introduced. DSM establishes
memory pattern for out-of-machine IPCs in HPC systems. Therefore, while an activity
is running on DSM, some costs are formed in DSM system, due to inherent behaviors
of program and usage of memory pattern.

The structure of operational costs for DSM (when this system is equivalent to
production line system) is very specific and explicit. It relates to costs of creating the
DSM (by the programmer or HPC manager) and maintaining it for transferring data
between producer process and consumer process.

As mentioned earlier, activity costs do not use a specific pattern like in the case of
operational costs. So, the equivalence of operational costs and production line triple
costs for each system that is equivalent to production line system is expected. When
a system like DSM is equivalent to the production line, there is no requirement to
consider one-by-one activity costs of each system because the activity cost is based
on basic system activity.

The most important thing about activity costs is understanding the basic activity
for which the system has been created. In DSM, basic activity is based on shared
memory, so there is an expectation that this system’s activity costs is created based on
the distributed memory activities of this system. On the other hand, these costs must
be under the effects of the basic operation of this system (transferring data on DSM)
[64].

If the basic activity of DSM system is changed, the effective elements on activ-
ity costs will change. If basic operation and activity of DSM system is changed
from transferring data to any other content, the activity costs of the system will
change.

2.3 Real cost of DSM-inhere dependent parameters

The logical model used by a programmer for implementing DSM is common because
there is available memory equal to the total existing distributed memory in the system.
It is proved that reaching this goal is impossible when using multi-computers systems
because of the existence of various and complex challenges and limitations such as the
establishment of persistent transparency. Hence, for the implemented DSMs to have
a correct implementation of the DSM concept, it is required to proceed with DSM
during the request until the expiration of the operations while transferring requested
data from one memory to another, maintaining consistency. All such operations are
costly.

@ Springer

1726 E. M. Khaneghah et al.

This has been considered under the title of the parameters originated from the nature
of the DSM [43].

In multi-computer systems that use DSM mechanism, the information transfer cost
is much dependent on the size of data to be exchanged. Therefore, practically, a simple
data transfer costs the same as a complex data structure transfer. Current DSMs are
implemented using different protocols and software in various levels of operating
system architecture. Therefore, the cost of transferring information in HPC systems
that use DSM is neither equal to zero as in local programming models on standalone
systems nor is a function of the amount of transferred data as in distributed memory
programming models on distributed systems.

The mentioned costs in this section come to play when DSM is implemented as
a software application at low levels. The implementation level is a critical condition
because all defined costs in DSM production line make sense if the execution of an
operation is hidden from users and handled by DSM management system and operating
systems involved in the implementation of DSM.

The parameters affecting DSM real cost model are classified into two groups. One
of these groups originates from the nature of DSM (as mentioned, these variables
caused by the adjustment between DSM system and production line and operational
costs).

2.3.1 DSM-inhere dependent parameters

e Average Data Transfer Cost
e DSM Creation Cost
e DSM Maintenance Cost

In continuation, after checking the proposed costs in [63], there is an analysis of
those costs in distributed computing systems like Grid and P2P computing systems
for DSM-inhere dependent parameters.

1. DSM creation cost The DSM cost is the result of the parameters of some distributed
memories at lower layers and the cost of protocols setting up the DSM. Due to the
costly nature of such operations, the cost of DSM set up was assumed to be equal to
the possible lowest level [63].

In the calculation of DSM cost, DSM is only assumed to run once at the beginning
of execution of a program, remains during the program run and is destroyed upon
completion of the program. Thus, the cost of establishing DSM in any situation is
calculated only once forever.

What is the HPC system management protocol? This is the protocol used in dis-
tributed HPC systems to implement DSM without considering the information of
transmission protocol. The protocol cost is equal to the cost of execution of the HPC
system management software as per a certain task and set up by the creators of the
HPC system management software.

The relation of these parameters is made dependent on the number of machines (as
cost relates to numbers) composing the HPC system that uses DSM mechanism. So,
the DSM creation cost is calculated as follows:

@ Springer

A mathematical model to calculate real cost/performance... 1727

DSM Creation Cost = Average Run Cost

Average Control Message Cost
(Number of DM * Average cost of each unif)
* + Z;\’::lMch Machine in Global Activity Cost Of HPC 1)
Management Software based on DSM license per node
~+Cost of HPC Setup per node

Equation 1 has developed the format of the created cost of DSM which has been
proposed in paper [15].

In Eq. 1, the run average cost per bit is the average cost of the program running
on distributed memory. The number of DM is the number of distributed memories
from the DSM. The administrator based on the cost of software calculates the cost
of HPC management software per execution. It should be noticed that the mentioned
cost shows an impact of the environmental parameter, i.e., HPC system management
software, and some effective hardware elements in HPC system on DSM cost.

In Eq. 1, DSM creation cost is the variable of cost, and the average cost of each
unit and cost of HPC management, software based on DSM license per node, average
run cost, average control message, cost of HPC setup per node are all cost variables.
Among all the cost variables, the average cost of each unit has fixed cost in distributed
systems, and other cost variables have dynamic cost. The scalable capacity of dis-
tributed computing systems is the reason of this content. In HPC systems, dynamic
costs are changed to fixed costs.

For the development of using the content of created cost of DSM in computing
systems that use pattern of biological systems like Grid, Cloud Computing, and P2P
systems, global activity [52] content can be used.

When global activity forms in the system, the creator machine of global activity uses
a centralized pattern for global activity if the mechanism of IPC of global activity is
equivalent to DSM. Therefore, a DSM is created between running machines of global
activity. So, the cost of DSM creation is calculated once. However, if the global activity
creator machine uses decentralized or distributed pattern, a DSM is created per each
communication in each local machine in which global activity happens. Therefore,
the cost of DSM creation will be per each communication event.

In Eq. 1, there are two activity fixed costs: HPC management software based on
DSM license node and cost of HPC setup per node. This cost is based on which parts
of DSM manager are installed in which machine. One of the efficient methods for
calculating the first cost is using the content of module or function; generally, DSM
management systems follow two contents. In this situation, the cost of Module or
Function related to DSM is calculated, and based on the kinds of module or functions
that are installed on each machine, the cost of each machine can be calculated.

About the second cost, it is important to have some configuration in the machine
when a machine wants to be a part of a global activity in the cluster, Grid, or P2P
system. The execution of this configuration in each machine is considered under the
supervision of HPC Setup per Node. One of the solutions is using the concept of time
value. In this method, the cost of the required time for configuration of the machine
for using in a computing system is considered [8,48]. In a cluster system, the cost of

@ Springer

1728 E. M. Khaneghah et al.

HPC setup per node is fixed per total time of cluster activity and can be calculated in
the cluster execution. But for computing systems like Grid and P2P, this cost is per
each global activity in which the member machine of the computing system plays a
role.

1. DSM maintenance cost A series of protocols are used for HPC and shared memory
management to maintain the DSM [63].

Without even considering the information transmission protocols at multi-computer
systems, the volume of communications and the exchanged messages to control DSM
and the transferred data volume in the DSM are a series of factors that directly affect
the maintenance cost of DSM. The DSM maintenance cost is calculated as follows:

DSM Maintenance Cost
KillDSM
(Zi:mm sy Control Messagei)

Kill DSM data transfer;
= * [i=Start DSM (W) * yli]
[(Cost of HPC Management Software based on DSM license per node
xSinking cost of each node) * y2]

2

Equation 2 is the extended format of the created cost of DSM, which has been proposed
in a previous paper [63].

Here, y; is the weight coefficient to determine the importance of data transfer size
cost, and y; is the weight coefficient for which the administrator should calculate the
cost importance of control message size.

In Eq. 2, the maintenance cost is specified based on the execution cost of a sin-
gle time of the HPC system management software, especially associated with DSM
management.

In Eq.2, maintenance cost, cost of HPC management software based on DSM
license per node and sinking cost of each node are the cost variables. On the other
hand, in Eq.2, data transfer and control message are considered as fixed costs. If the
number of code(s) can be fixed, all cost variables are fixed and otherwise are dynamic.

InEq. 2, itis assumed that the computing system management element tries to create
DSM for executing a global activity (the computational activity consists of more than
one computing element); during the global activity, running DSM management tries
to pay the cost of maintenance of DSM. The nature of this cost is different from the
cost of data transferring on DSM. This cost is for maintenance of DSM for a specific
global activity, which is paid by the DSM manager.

This cost is completely dependent on data transfer and control messages. In Eq. 2,
the beginning of the creation of DSM to the end of the related activity is being surveyed;
it is probable that the mechanism of DSM may be used in biological computing
systems like Grid and P2P systems. In addition, the following scenarios should also
be considered: (a) probably one machine is used in more than one global activity, (b)
in execution of the global activity, there is a possibility that DSM needs to be created
more than once and for different parts of the global activity.

@ Springer

A mathematical model to calculate real cost/performance... 1729

With respect to Eq. 2, if data are transferring, the importance coefficient of DSM
is getting higher and the y1 coefficient is also getting higher. Increase in transferring
importance coefficient means the creation of special-purpose DSM or increase in
control messages. The amount of importance of the coefficient can be equivalent to one
hundred when DSM is transferring a hard real-time message and can be equivalent to
one when there is a standard message. Y2 is also the coefficient importance of control
messages in DSM management software. Depending on the importance of control
mechanisms of DSM, the mentioned importance coefficient will increase.

III. Average data transfer cost In this paper, various DSM systems and their costs have
been analyzed to find data transfer cost [63].

The data transfer cost is known to be directly related to the level of implementation
of the protocols generating the DSM; this is a different amount on different systems.
So, the implementation of the protocols is an important part of a DSM, which can
lower the data transfer cost. However, it is possible to consider [0, 4096] as the basic
data transfer for the systems.

Page size in DSM is usually deemed the same as what is typically considered in
operating systems. In case the underlying operating system has a different memory
pattern than Linux, the high limit is equal to the output of getting confPAGESIZE or
the equivalent command. However, in this case, the high limit is chosen to be 4096.
There are some benefits of this choice. Performance is one of them, and it avoids
conversions in the execution of system calls.

In DSM mechanism, the data transfer cost is equal to the data transfer cost of one
page. This sentence is also correct for certain conditions, especially in heterogeneous
systems in which there is an operating system that uses a different memory page size
other than 4 KB. In such situations and to transfer information between machines from
the view of the local memory manager, a unit known as the segment is used. Each
segment is assumed to be equal to some memory pages, which may be even a decimal
number. The calculation of the average of the data transfer cost used is presented in
Eq.3.

Size(Data should be transfer)
Average Data Transfer Cost = * Y3 3)

PAGESIZE

In Eq. 3, y3 = weight coefficient to determine the importance of average data transfer
cost, which must be calculated by the administrator.

3 Real cost of application-specific dependent parameters

The second group of parameters is due to the specifications of programs that utilize the
DSM mechanism (these parameters caused by the inherent activity of DSM system
and basic operations of this system).

Application-Specific Dependent Parameters:

e _Page Multi-Access Overhead Cost
e Page Transfer Overhead Cost

@ Springer

1730 E. M. Khaneghah et al.

e False Sharing Cost

Activity costs must (I) indicate the nature of activities currently running in the system
and (IT) should represent inherently and identity features of the system. The primary
focus is on costs made by the nature of the system. Principally, this is because when
an activity is executed in the system, it utilizes specific features of the system that, in
turn, give meaning to the execution of the activity in the system.

Regarding such an approach, it is assumed that the occurrence of data (or function)
transmission activity in the system causes activity type costs appear in the DSM
production system. The very first cost made by information transmission in DSM and
establishment of IPC is a cost called multi-access to DSM data.

Before entering the details of the mentioned costs, an overview about DSM system
and its features should be noticed. In addition, assumptions of the DSM system should
be decided for its cost extraction when there is a discussion about these details.

3.1 DSM operation and activity measurement units

When producing parameters causing activity costs, a unit needs to be considered for
running activities in the DSM system. Software DSM systems implemented in the
operating system can be thought of as extensions of the underlying virtual memory
architecture.

On the other hand, considering that DSM is a kind of memories managed by HPC
systems manager for IPCs, the unit of this memory must adhere to the pattern of
the units used by the operating system to manage the memory [65]. Therefore, DSM
access unit should utilize one of the units used by operating system to access memory.
Software DSM systems also have the flexibility to organize the shared memory region
in different ways. The page-based approach organizes shared memory into pages of
fixed size. In contrast, the object-based approach organizes the shared memory region
as an abstract space for storing shareable objects of variable sizes. Another commonly
seen implementation uses a tuple space, in which the unit of sharing is a tuple [66].

The proposed model is obtained by DSM systems, which use page and segment
patterns to build a structure of DSM. Although segment size is subject to variation as
time passes by, yet it can cover object-based DSM mechanisms. In this paper, segment
patterns are used as the measurement pattern of DSM.

3.2 Assumptions for calculating application-specific depends on parameters

The application-specific dependent parameters cost, firstly, indicate thinkable situ-
ations of DSM system when an activity is running in the system. Secondly, they
emphasize on the basic concept of the memory model, i.e., data consistency con-
cept. They represent the interaction of this basic concept with other elements of the
production system (processes) and environmental elements of the production system
(operating system and HPC system Manager). Thirdly, the mentioned situations indi-
cate general categories of operational costs, which may occur in DSM production line
system.

@ Springer

A mathematical model to calculate real cost/performance... 1731

Selected situations to calculate activity cost covers situations of two elements of the
production line, i.e., process and the data, whose consistency should be maintained.
The first case occurs in a system when processes show cost-producing behaviors. The
second case happens when processes break production line’s sequence. The third case
happens when data faces challenges in maintaining its consistency.

In this case, situations in which one of the two elements or the both produces the
cost in DSM production line are considered.

This means:

(A) Several processes (worker) access a single segment.

(B) The production line is not straight, and processes, thus (workers), ought to change
segment transmission stream in the production line.

(C) Processes (workers) have no information from one another in piece production.

Other possible situations for data and process are situations in which a technical defeat
has occurred in the production line.

Surely, some costs may be produced in Grid and P2P systems, which cannot be
explained explicitly by the mentioned costs. However, they can be mapped to the
situation of the segment and processes, which were discussed in this section.

3.3 Model to calculate activity cost in DSM
The following relation is used to calculate the DSM cost:

DSMcostyogy < [DSM Activity COST B DSM Operation COST]

Page Multi Access Overhead Costll
So that DSM Activity COST « Page Transfer Overhead Costll
False Sharing Cost

DSM Create Costll
and So that DSM Operation COST « | DSM Maintenance Costll 4)
Average Data transfer cost

The most important question that is asked about Eq. 4 is the reason of the absence of
the costs, which were not mentioned. Any cost must be in operational cost group or
activity cost group due to the calculation of production line cost and equivalence of
production line and DSM. There is no other group for the cost of the production line
and DSM system to be considered.

The activity cost consists of costs based on distributed memory and basic trans-
ferring operations. Distributed memory is similar to the other memories that consist
of process and data. In data, the most important feature to be considered in DSM
is maintaining compatibility. In DSM, except creation, transferring and consuming,
another activity called data compatibility can be considered for data. Due to the exis-
tence of more than one process in the management scope, there is a need of using
the mechanisms of data consistency establishment in DSM system [67,68]. The cost
related to data consistency establishment is considered in data transferring unit cost of
DSM system. Data consistency is similar to costs created by changing the transferring

@ Springer

1732 E. M. Khaneghah et al.

unit in local manager (Operating system) and HPC system manager and is part of the
essence of DSM system.

It should be noticed that a rule called production rule holds for any production
line. This rule talks about totality, identity, and basic features of the production line.
Activity costs are raised in production line when this rule is violated.

Data consistency is considered as the primary rule in DSM production line, as in
memory model.

Data consistency in DSM production line should be supported at the level of com-
puting systems with distribution property. Therefore, violation of the production rule
may be due to both an element of production line system and its distributed nature.
This issue is considered as one of the innovative applications of systems concept in
producing execution cost of programs since they both investigate costs caused by both
fundamental elements of the system and the concept of the system.

The false lock and false sharing activity behaviors for beneficiary processes in DSM
are remarkable except for creation, transferring and consuming. These two behaviors
are caused by the nature of being DSM system [65,69,70]. Except false sharing and
false lock for beneficiary processes of DSM and the behavior caused by consistency
for existed data in DSM, any other process and data behavior that are part of producing,
transferring, and consuming are operational.

However, three types of activity costs are considerable for such a system.

One of the important criteria of DSM is its transparency and hiding underly-
ing complexities from users. However, this affects some costs calculated in the
paper.

Therefore, this model is calculated for DSM mechanisms implemented at a low
level. This is because DSM mechanisms implemented at the application level show
less support for transparency for users. Software DSM systems implemented at the
library or language level are not transparent, and developers usually have to program
differently. Transparency pattern leads to a concept called hidden cost of DSM. On
the other hand, as it will be mentioned further in the paper, one of the most impor-
tant concepts of DSM that should be respected by this model and any other memory
model is data consistency. Various models have been introduced to maintain data
consistency in DSM mechanisms. These models differ in efficiency and cost. The
Sequential Consistency pattern model is proposed here for the data consistency pat-
tern.

The important point in Eq. 4 is the method for finding the relation between each of
the effective parameters on the right side of the relation with the DSM real cost, for
which the dependency separation principle is used for calculation.

According to this principle, calculating the relation of each parameter with DSM
happens. The algebraic sign was found using the dependency polynomials in the case of
existence of dependency between the main parameter and the other parameters. Then,
the dependency and the value would be applied to such parameters by a coefficient.
The sign M used among the elements in Eq. 4 represents a mathematical composition
relation.

The most important point here is that Eq.1 has been written in the form of
a_mathematical relation. To_convert_the relationship, a constant number known

@ Springer

A mathematical model to calculate real cost/performance... 1733

as the DSM constant is multiplied to the right side of the above-mentioned rela-
tion.

Based on data element and process element, two total costs are expected from
activity in the Application-Specific costs related to DSM. Costs caused from being
distributed and costs caused from being memory manager. The second type of costs
caused the division of memory to manageable parts like segment and page by DSM
manager. The costs resulting from being distributed are caused by the lack of a
centralized manager of DSM. In DSM mechanism opposite to old memory mech-
anism, the central element does not manage DSM because physically, each part of
DSM is under the management of a local operating system related to computing ele-
ment.

Costs resulting from being memory manager are kinds of costs that must be paid for
using the DSM mechanism in shared memory like memory management mechanisms;
DSM manager element needs to divide the memory into sets of units like page and
segment to manage the unit. Therefore, the first concept of activity cost in DSM results
from being memory nature and instinct. The concept of memory divided into a number
of units is for management. The concept of second activity cost in DSM is caused from
being distributed.

3.4 Paging overhead cost

In order to save or retrieve some blocks located in the local memory, the local operating
system converts a user access to a variable in a local memory system. In such cases,
the smaller the size of the blocks, the higher will be the frequency. Bigger-sized blocks
save on the frequency of accesses but may lead to internal fragmentation.

In DSM, which is naturally used to share a high volume of mostly complex data,
the above problem is more critical. When a user asks for a variable, the DSM manager
must either store or retrieve a big number of blocks, which in most cases are not on
a single machine and are in the DSM space. Thus, with a decrease in the block sizes,
the number of references to the DSM manager increases. Since such references are
performed on the network, the resulting overhead is high. When block sizes are big,
less memory is wasted because such systems are naturally associated with big data.
Paging overhead cost is a data caused activity cost.

Paging overhead cost is related to data transmission when data is not accessed [70].
This cost is also based on activity since it would not make sense unless the IPC is done
through DSM. This cost is based on data consistency principle in memory models.
This cost indicates the nature of DSM model. The reason for focusing on this cost as an
activity cost in DSM production system is due to realistic nature of its calculations. In
theory and when investigating out-of-machine IPC mechanisms like DSM mechanism,
it is usually assumed that two processes access shared data. However, in Grid and P2P
systems, several processes communicate with each other (more than two) and access
shared data. The mentioned cost points to data consistency maintenance when several
processes access data.

One of the significant challenges of the production line is a selection of segment
size. This challenge is more severe regarding production lines in which when one

@ Springer

1734 E. M. Khaneghah et al.

worker is running an activity on data, no other workers have the permission to access
it. As mentioned, the main assumption of this paper about despotic rule over DSM
production line is that its data consistency model is sequential consistency [71].

The complex state can be considered for a production line in which more than one
worker could work on a product in a time unit. However, in such states, the activity of
products does not affect each other. This indicates that the size of production unit was
not selected properly. In DSM literature, this concept means that the size of segment or
page is not selected logically. Selecting production line system as an equivalent system
of DSM implicitly represents the use of a memory model of sequential or consistency
from the strong type.

When activity performed by worker on the segment is known, the selection of
segment size is easier. However, it gets harder if the worker locks the segment, i.e.,
no observation can be made. However, if segment size is selected larger, it may make
workers wait for some time in the production line and consequently produces cost.

If it is chosen smaller, then the workers would need to lock more segments to
fulfill their task; thus, the block time is increased. Also, selecting a small size in case
workers’ operation pattern shows they are working on large segments; another cost
called sequential segment transmission between workers is introduced.

Considering an HPC system composed of N machines, holding data in a distributed
manner and presuming that the base size of the block is also X bits, the page overhead
cost of the HPC used Eq.5

Paging Overhead Cost = Cost (Breakdown or Merge)
+ Cost(Control) + Cost(Consistency Keeping)
—

Paging Overhead Cost
N
= |:|: E - ((Sizeof Sharing Data in Machine i) x (Cost Sharing Datalowl)i|
=

* Size of Block in MachineiX) * Cost Data Block + Cost Control
+ CostConsistency Keeping * y4 %)

In Eq.5, if the computing system is a closed system like Cluster, the costs of cost
sharing data local and cost data block is an activity cost that fixed type, and if the
computing system is a biological system like Grid and P2P, the mentioned costs must
be calculated per each global activity. There is a need for the information about the
nature of DSM that is used in a computing system for calculating the costs of cost
sharing data and cost data block. Cost sharing data and cost data block are given in
the following:

(a) Level of implementation of DSM mechanism

(b) Compatibility mechanism of data, which is used by DSM

(c) The average number of beneficiary process in shared data

(d) The system calling number for storing and achieving data

(e)_The mechanism that is used in operating system for preventing from accessing
the common data (like Semaphore or Monitor)

@ Springer

A mathematical model to calculate real cost/performance... 1735

(f) The average number of required memory units for executing an instruction of
beneficiary program in DSM

(g) The average probability of simultaneous accessing to existed data in DSM by two
(or more than two) beneficiary processes of DSM

(h) The average number of required parallel processes for executing a global activity

The nature of effective data on costs of cost sharing data and cost data block is a
statistic and follows the pattern used by the program for accessing the stored data in
DSM and memory management mechanism in a computing system. Looking at the
effective things in costs of cost sharing data and cost data block, if DSM manager
is implemented at the kernel level of operating system, it can extract the information
using existed data in data structure related to memory (and following that, DSM).
Generally, in operating systems, sets of the data structure are being used for storing
the data related to memory (as DSM is a memory).

In Eq. 5, y4 is weight coefficient to determine the importance of block size cost in
a machine. Memory is divided into N-bit blocks. Also, it is assumed that if a process
needs to access only some part of a block, DSM mechanism locks the whole block.
So the locking cost is completely related to the nature of existing data in blocks.

It is obvious that if the nature of stored data in a block has a high frequency of
using computing processes, the cost of maintaining this block by memory management
element will increase. On the other hand, one of the differences of DSM cost computing
is in P2P systems and traditional computing systems. In traditional computing systems,
as all the computing processes are related to a global activity, the nature of created
computing processes is similar to each other with little different behaviors. If the high-
frequency process uses a block of memory, this behavior will be repeated for a long
time. In computing systems like P2P and Grid, as there is more than one global activity
in the system, the computing processes will have different behaviors in the frequency
of using the memory blocks.

DSM management unit should pay a cost called information maintenance. Today,
operating systems handle the division of memory into blocks, and thus, the cost of
data maintenance of blocks is paid by the operating system.

If DSM uses another pattern for partitioning memory other than what is used to
partition main memory data, the maintenance of information status must be considered
as another activity-based cost.

Another point about the cost is the use of the patterns regarding the optimization.
Equation5 shows that the cost would be reduced if the size of shared data and X
change. However, X should be amended to become as a coefficient of the block size
of each machine, and the least cost is required for its calculation.

Paging overhead cost consists of two concepts. Part of this cost caused from being
memory manager is DSM management; therefore, it must have a mechanism for
management’s DSM. The manager of an operating system uses a pattern for managing
the real memories that are constituent of DSM. DSM developmental pattern is not a
centralized pattern.

@ Springer

1736 E. M. Khaneghah et al.

3.5 Page transfer overhead cost (multi-access event) known as DSM consistency
as maintenance cost

For using any memory pattern for inter-process interaction or communication, data
consistency is considered as an important issue. Maintenance of data consistency is
easier when memory unit (model) is under the control of a single operating system,
which is controlled by an administrative domain constituted by several operating sys-
tems [72]. Therefore, data consistency mechanisms are considered as a significant
challenge in DSM systems [69,72]. Several patterns have been introduced to maintain
data consistency when several processes share, i.e., read or write, a common data.
Data consistency maintenance cost is an operational cost.

Data consistency is one of the basics of memory models. Consequently, activity
is expected to make use of this concept when formed in the system. Otherwise, the
activity does not make use of system attributes, and thus, running activity on the system
is unreasonable. Paging transfer overhead cost is a consistency caused by activity cost.

This cost is hidden until an activity runs in the system. However, this cost is entirely
dependent on the efficiency of DSM system and may differ in different systems [73].
The occurrence of this event in DSM system means that, in the production line of
DSM, several (worker) processes communicate with a shared segment. Modifications
to the segment should not violate segment concept at any instance of time. The memory
page transfer overhead does not always exist in a distributed HPC system but is only
triggered by certain situations. It is not a fixed parameter and is only activated due to
the occurrence of certain conditions; this parameter is called the firelight parameter.

This cost indicates the relation between internal systems concept with operating
system’s environment element (as vice representative of machine’s hardware element).
A coherence protocol, chosen by a consistency model, maintains memory coherency.

The problem of page transfer overhead is when data in the same data block has to be
updated on various machines in the HPC simultaneously. Page transfer causes a high
number of data blocks to be transferred back and forth between different machines
with less appropriate action done.

Data transfers inside systems that use DSM mechanisms are costly, and the DSM
manager uses the block concept for saving and retrieving data while the block size is
different from different parts of DSM. If at the time (7), some machines in the HPC sys-
tem proceed with updating or changing data of an individual block of memory, ignoring
data compatibility issue, for the time being, a high volume of memory page transfer
occurs in the cluster system. These transfers are called as non-grasp transfers. In non-
grasp transfer, the size of data blocks transferred does not affect the overhead. The non-
grasp transfer causes a DSM page to be continuously transferred between machines.

Data contained in the transferred memory page changes as time passes. This is
to say that if K machines want to change data in a memory page located in DSM
(based on the data compatibility protocol used in DSM), each of K machines will take
the memory page from the owner machine to add to address space of itself process.
The non-grasp transfer, therefore, occurs when the program that is supposed to be
executed in the cluster system is divided into parts that use several shared variables. If
the bigger number of shared variables among subprograms running in an HPC system
produced, then the probability of non-grasp transfer occurring becomes higher. To

@ Springer

A mathematical model to calculate real cost/performance... 1737

solve this problem, running programs on the HPC system should satisfy the following
condition:

if S; = Set of Variable € Partition; of a program then
Vi Aj3iAje€ Program Partition — §; N S; =0 (6)

If the above condition is satisfied, it is a guarantee that non-grasp transfer never occurs
in the HPC system. However, in practice, enforcing such condition for running pro-
grams in an HPC system requires making some changes to the program in a way that
there are no shared variables between various parts of the program to be partitioned.
The other solution is for the manager of an HPC system to find a partition for the
program to be executed on the HPC. Further discussion on the first solution is outside
the scope of this paper, but some compilers like Mentat [74] try to implement the first
solution. The second solution is suitable for small programs and is not usable for a
real program run in HPC.

Activity costs caused by the change in functionality pattern of system processes,
DSM system should have a logical production approach. If for any reason, some change
occurs in the production line, it would be regarded as an activity cost. In DSM system,
there is a concept called multi-access to data. This notion is caused by the change
in functionality pattern of processes. Non-grasp transfers cost is an operational cost
caused by the change in DSM production line’s pattern. The memory shared among
many processes is passed over processes serially. However, time spent on moving data
between processes is less than the activity time performed on the data by processes.
However, an idle DSM system assumes that this situation never happens, but in real
world changes from the production systems viewpoint, the changes in behaviors of
processes and changes in production pattern produce this cost.

Two types of costs are created in the system when non-grasp transfers occur in
DSM production line. One of them is data transmission cost, which is produced by
processing, and the other one is the time cost system that waits for non-grasp transfers
to complete. Non-grasp transfers have a ring-like nature, i.e., a shared data segment is
turned around processes, and finally, it will be transferred to the machine start ring or
next machine that needs the data. Each transfer between non-grasp ring’s vertices will
create a cost called non-grasp transfers. Also, the overall time spent on transferring
data in the non-grasp ring will add another cost to DSM system called non-grasp
completion time cost.

To calculate the non-grasp transfers cost, the frequency at which non-grasp transfers
occur in DSM production line system and the time required for a non-grasp cycle to
complete data transmission in the system need to be known.

Assuming (f) shows occurrence frequency of non-grasp cycle in DSM production
line system, Complete Non-grasp variable shows completion cost for data transmission
in the cycle and HPC Uptime is HPC system cost timing unit. Equation 7 can be used
to calculate non-grasp transfer cost.

Non-grasp Transfer Cost = fan * ((HPC Uptime,,s * y5)
+ (Complete Non-grasp,.,g; * y6)) (7

@ Springer

1738 E. M. Khaneghah et al.

In Eq. 7, frepresents occurrence frequency of non-grasp cycles when the Mth machine
initiates data sharing. HPC system time cost is the same as HC system maintenance
cost in a specific interval. An extension of DSM maintenance cost is based on time
concept.

In Eq. 7, the assumption is that non-grasp activity is an atomic activity and all of it
is an activity from the perspective of DSM manager. This assumption considers that
the occurrence of a non-grasp activity in DSM production line is the disruption of the
natural process of the production line. Therefore, DSM manager considers all needed
activities as an activity for coming back of production line to a natural state.

From the perspective of DSM manager, the activities that happen during non-grasp
operation do not sort activities that are in the event of DSM production line. So, DSM
manager considers as only cost in the field of non-grasp transfer. The reason of this is
having the atomic nature of non-grasp activities and non-grasp transfer consequently.
DSM manager assumes that DSM production line must be kept active during non-
grasp transfer, and here, the cost of keeping production line active is the only cost.
Y5 coefficient shows the number of machines involved in the non-grasp transfer. If all
the machines are members of DSM production line being involved in the non-grasp
transfer, the y5 coefficient will be one.

On the other hand, it is important that a DSM production line subsystem is created
during the non-grasp action. This means (a) some part of DSM manager must manage
these processes and data because the set of processes are on stream on data, and (b)
non-grasp action creates DSM production line in the main production line. Therefore,
this cost must be calculated. (In the calculation of DSM cost, in the level of the main
production line, all of the actions related to non-grasp action are considered as one
action, but for the calculation of the cost of non-grasp action, a sub-production line
has been assumed. The most important advantages of this method are that if sub-
production line causes the creation of other sub-production line inside it, Eq. 7 can be
easily calculated.)

In this situation, y6 coefficient shows the number of DSM elements involved in
DSM management. If independent DSM manager is needed for managing the cre-
ated sub-production lines by non-grasp action, the mentioned coefficient will be
one. On the other hand, in this paper, the sub-production line pattern is used for
calculating the cost of page transfer overhead. This indicates that if more than one
non-grasp action is created in part of DSM production line without changing the cost
calculation equation, Eq.7 can be used and its developed state will be proposed in
Eq.8.

On the other hand, complete non-grasp cost is transfer cost in a certain interval of
time. Thus, Eq. 8 can be used to calculate the non-grasp cost in machine m.

Non-grasp Cost of Machine M = fy * ((Vi, j € (UnawareCycle:

Kill DSM
i Dy Control Messagei>

Kill DSM data transfer;
* [i=Start DSM (W) * yli]
[(Cost of nClustersManagementsSoftware based on DSM license per node

* Sinking cost of each node) % y2]

*y5

@ Springer

A mathematical model to calculate real cost/performance... 1739

N

Z((Size of Sharing Data in Machine i)

i=1

* (Cost Sharing Datalocal)] * [(Size of Block in Machinei/ X)) = Cost Data Block]
+ Cost (Control) + Cost(Consistency Keeping)] * y4] * y6]

ZT:Complete Unaware Cost

i=1

Therefore, Total Unaware Transfer Cost = Z Unaware Transfer Cost Machiney; (8)

Non-grasp transfers may not occur in a program running on HPC systems. One may
observe the formation of a non-grasp information transfer cycle upon formation of
any DSM.

Non-grasp transfer cost is calculated per cycle. Since non-grasp cycles in a program
are a function of DSM requesting processes’ behavior, they should be calculated for
each program separately. Program pattern has a significant impact on the structure of
non-grasp information transfer cycles. Thus, this activity cost should be calculated
while the program is running on the computing system.

Calculation of non-grasp transfer cycle cost as time passes is in violation of the
nature of calculating program’s cost since some costs of DSM production line are
merely calculated at the program’s execution time. To resolve this problem, scientific
applications should be noticed that utilize HPC systems and have a unique pattern.
These patterns hardly ever change but are frequently executed. This means that a
scientific program designed to investigate a natural phenomenon usually investigates
the pattern for different samples. Therefore, some individual numbers of executions
can drive out processes’ behaviors.

This is easily understandable in closed computing systems like cluster systems. In
cluster systems, the cluster is only running one scientific program anytime during the
life of the system. In biological systems like Grid and P2P, more than one scientific
program runs in a computing system. For solving this problem, any global activity in
computing systems like Grid creates a computing page, which is equivalent to cluster
computing system. Therefore, in biological computing systems, executor machines
of each global activity create equivalence system with the cluster computing system.
This concept can be used to calculate non-grasp transfer cycle cost and cost for DSM
usage.

Another important point is the dependency of non-grasp information transfer cycles
to data sharing initiating machines.

A directed graph can be considered per non-grasp information transfer cycles for
understanding this content. The starting point of this graph is equivalent to starter
machine of this cycle. The ending point of this graph is equivalent to the machine
in which the cycle is finished, and the natural process of DSM production line will
continue. The finisher machine of the cycle can be equivalent to starter machine of
the cycle. When directed graph equivalent to non-grasp information transfer cycles
starts to be scrolled, DSM must be transferred from one node of the graph per each
transfer. (This data transfer is a logic data transfer and data is not transferred in real
state, but the starting address of data in the shared memory of data sharing machine is
transferred.) As graph scrolling is only for directed graphs, the page transfer overhead

@ Springer

1740 E. M. Khaneghah et al.

cost changing is dependent on the machine in which directed graph is started and the
relation of the computing page to DSM sub-production line.

In the worst case, if there are N machines in DSM production system, N non-grasp
data transfer cycles are formed.

InEq. 8, coefficients in the calculation of non-grasp transfer cycles provide the prob-
ability in the calculation of the cost of removing less important non-grasp information
transfer cycles. It is done by changing the location of data to requesting processes.
On the other hand, it should be noticed that non-grasp information transfer cycles
constitute part of activity costs. The nature of activity costs is that against oper-
ational activities, and they can be expressed as functions of the independent time
variable.

The existence of parameter f indicates the frequency of data transfer cycles of
machine M. This parameter can be regarded as an important criterion to investigate
non-grasp data transfer cycles of a machine. Computing system’s designer makes
decisions about the lowest reasonable limit for the calculation of non-grasp cycles cost.
However, machines with lower non-grasp transfer cycles are due to the occurrence of
some events, which can be regarded as oscillating events and may be removed from
calculations after the results are calibrated.

3.6 False sharing cost

The other operational cost considered in this paper indicates the situation when data
consistency concept moves from traditional memory model toward distributed systems
world [69,70]. These systems deny the existence of centralized structures in nature.
However, this makes some challenges in data consistency model of memory [67,68].
False sharing or non-grasp sharing is a cost that indicates one of the cost generating
issues in data consistency model. As stated, this cost is caused because of moving
from the single user toward distributed systems

The non-grasp sharing, as in non-grasp transfer, does not occur always, and its
occurrence in the system might be observed as an effective parameter in the DSM cost
under certain conditions.

The non-grasp sharing at a distributed multi-computer HPC system becomes mean-
ingful when two processes may be placed on two different machines or even on one
single machine. The HPC system tends to access two pieces of data that have no rela-
tion to each other in a way that such data is placed on a single data block in DSM.
These two pieces of data have nothing in common except to be located at a block of
DSM. Whatever is the compatibility mechanism of DSM and without prejudice to the
discussion of non-grasp sharing, both processes access the block containing the data
required and tend to add them to their local memory for utilization. More precisely,
any local memory manager asks the DSM manager to add the DSM block containing
the data in the data transfer unit to its local process address space that requested access
to the memory block. Under such conditions, there is a data block that has been shared
between two processes, and each of them has subjected the continuity of its work on
releasing the DSM block. Under such conditions, an error might have occurred in the
distributed multi-computer HPC system.

@ Springer

A mathematical model to calculate real cost/performance... 1741

For identification of non-grasp sharing, like identification of dead-end occurrence
in operating systems, the following two policies pertain to the discussion of DSM
management in general:

1. DSM manager applies a series of policies such as frequent checking and inspection
before the execution of non-grasp sharing process inside the system. It should be
noted that such action is quite costly on the given scales.

2. DSM manager does not consider the occurrence of non-grasp sharing. Under such
conditions, processes involved in non-grasp sharing will destroy themselves after
finishing the dedicated execution time. In fact, in this method, the DSM man-
ager does not involve itself in the matter of non-grasp sharing at all and allows
the processes to exit the system upon finishing their execution time solving the
problem.

Many DSM systems use the second method.

The second important subject in the field of non-grasp sharing is the dependency
of sharing on the block size. It is practically proved that in an HPC system with the
DSM programming model and mechanism, the bigger the level of the logical blocks
generated by the DSM, the higher is the probability of occurrence of non-grasp sharing
[75]. This is valid particularly in HPC systems that perform program distribution at
the subprogram level. It also frequently occurs in HPC systems in which the program
execution has a large number of variables and distributes the program at the loop level.

The important issue in the field of non-grasp sharing is the extent to which parame-
ters are related when sharing occurs. A part of this issue is associated with the method
of grain that may be approached via either the user or the compiler. The other part of
this response is associated with the HPC definition. In case the HPC acts in a special
way, in which only one task is done at any moment, then the level of occurrence of
the non-grasp sharing is significantly reduced. In case the HPC is allowed to execute
more than one task at any moment like Grid and P2P, the rate of non-grasp sharing
occurrence is increased along with increases in the number of tasks.

Another factor that has a direct effect on the occurrence/non-occurrence of the non-
grasp sharing is the issue of blocks in the DSM, which is considered similarly from
two viewpoints. First, the probability of the existence of two independent variables in
a block is considered based on pigeonhole principle.

The second issue is the non-grasp sharing dependency on the size of the block in
the DSM. The purpose of the inspection is to know the probability of two variables
that cause non-grasp dependency to be located in the same memory block. Task A is
assumed to be executed on K machines, which have also been divided into n sub-tasks.
Thus, there is a K-distributed memory. Please note that the expression is division and
not separation.

The relevant comparison to be made in this regard is between the values of 7 and K.
The problem may easily be converted into one of the set algebra classical problems.
There are n pigeons and K-holes according to the pigeon hole principle; in case n > k,
there is a hole in which there is more than one pigeon so that the non-grasp sharing
may occur.

This problem is illustrated in the HPC with n > K. The reduction and absurdum
for this problem are used. Two states may be considered for reduction and absurdum.

@ Springer

1742 E. M. Khaneghah et al.

In the first state, n < K. So practically, there are some machines that are idle. Idle
machines are in conflict with the philosophy of creation of HPC systems that aims to
reach a high processing capability. It is equal to have the programmer or compiler that
is not presenting a proper partitioning on the concept of HPC systems, causing some
machines to become idle in the HPC with no assigned tasks. Thus, the occurrence
of such conditions in HPC systems is improbable. In the second state, n = K and
two sub-states are found. In fact, on the existence or non-existence of dependency,
the state is converted into such two sub-states. The first one frequently occurs in “n”
programs that are not dependent on each other. In fact, in such state, a subprogram
is under execution on a machine and uses a piece of data during its execution that is
located in the block associated with the other subprogram. This state is general, and
its occurrence can be seen in most of the programs executing on HPC systems

I3

In such state and at a certain time, the process “i” requests the block associated

[73EEH]

with process “j” to be added to its address space to continue its operations. Process
“j” may also be working with its data in such block, so a non-grasp dependency is
created in practice.

There may occur another certain state when n = k, in which no non-grasp depen-
dency occurs at all. Such state hardly occurs; however, partitioning of the main program
into subprograms occurs in a way that subprograms are not dependent on each other.
In the case where the main program is partitioned into subprograms such that no two
programs need to exchange information and the number of subprograms is equal to
the number of machines, it may be said that non-grasp dependency never occurs.

Non-grasp sharing cost is caused because DSM production system is a distributed
production system in which central machines are avoided. Taking a look at the nature
of what causes this cost, it is obvious that this cost is due to effects of identity issues
of a distributed system using DSM in HPC systems.

Non-grasp sharing cost in HPC systems like clusters is lower in comparison with
biological computing systems like Grid and P2P. In a closed computing system, the
system manager can gather the exact information about the program and constituent
subprograms. On the other hand, in such computing systems, system manager has
exact information about the machines that are the members of a computing system
and has their abilities. These two subjects cause the manager to calculate the non-grasp
sharing cost easily.

In these systems, there is no possibility of n > k state because the manager considers
this state as loading disruption because of having exact information about computing
elements state. And also with using the mechanisms of migration and based on loading,
the manager tries to change that state ton = k orn < k.

If loading element can do the open activity of loading based on subprograms, non-
grasp sharing cost will decrease in the system. In biological computing systems, the
manager does not have exact information about computing system and its elements.
Therefore, according to pigeonhole principle, the probability of non-grasp sharing
occurrence increases. Due to this, in biological computing systems, especially the sys-
tems in which there are computing elements with a high frequency that are increasing
or decreasing in number, the non-grasp sharing cost is increasing. In such computing
systems, there is the probability of occurrence of n > k state because of adding of
computing machines. This causes the system manager to call the loading units and

@ Springer

A mathematical model to calculate real cost/performance... 1743

process migration mechanism with higher frequency. Calling the loading element and
process migration in both biological and closed computing systems causes the dis-
ruption of the natural process of DSM production line, and it causes the non-grasp
transfer cost except non-grasp sharing cost.

False sharing cost, as other activity costs discussed in the paper results from
maintenance of the basic rule in DSM production line system, i.e., data consistency.
Practically, this is because two irrelevant data existed in a block and were accessed
by two irrelevant processes. In this case, DSM manager sends one of the processes
to the blocked state to hold the basic principle of the production line. From a process
standpoint and if it knows its status and status of its required data executively entering
blocked state are nonsense.

The mentioned cost would appear in the real world and production lines as well.
However, its appearance is highly dependent on the size of an existing piece of
the production line. If the piece is large and contains several sub-pieces such that
some task must be performed on each piece, as a worker locks piece ith to work
on it, all other workers will be workless. However, it should be noticed, in nature,
this blocking differs with the blocking in which two processes intend to work on
a shared data and production line’s basic rule prevents one of them. In this case,
if the size of the piece was well appointed, it could prevent executive blockage of
processes.

False sharing is a time activity cost. In DSM production line system, this cost indi-
cates the cost exerted on the system due to blockage of a process. To calculate cost
produced by false sharing, two issues must be known. First, what is occurrence proba-
bility of false sharing in HPC systems? Second, what is the frequency of false sharing
occurrence regarding block size in HPC system? Moreover, finally, what cost should
be paid in an HPC system for each occurrence of non-grasp dependencies? There are
different methods to investigate occurrence probability of non-grasp dependencies in
DSM production line system.

As mentioned in this section, the possibilities driven by pigeonhole principle can be
used to decide about the status of the occurrence probability of non-grasp transparency.
In an HPC system, if g shows frequency of the situation in which n > k for a certain
time interval, then ‘g’ indicates occurrence probability of non-grasp dependency. The
cost of non-grasp dependency for a DSM production line system is how much time a
process keeps up the shared memory distributed between it and another process while
the process does not use DSM. In other words,

Non-grasp sharing

M~ . o — Process;_j
(Zgﬁ,ﬁ}s%w Control Messagei) ’
Kill DSM data transfer; 1.
* [Ziisrart DSM (Page s,-zg,.*) * Y 1:]
= &M * * 8
[(Cost of Cluster Management Software based on DSM license per nodex
L Sinking cost of each node) *)72] L interva,
+ Waiting Cost ; * y7 + Running; Cost O]

@ Springer

1744 E. M. Khaneghah et al.

In Eq. 9, assuming occurrence probability of non-grasp dependency for process j in a
machine that is a member of DSM production line system is equal to g, this cost states
process j keeps the data it has shared with another machine in which process i exists
plus waiting time of process j.

In the calculation of Eq.9, like Eq.7 and its development mode, in Eq.8, DSM
manager considers non-grasp sharing as an atomic activity. This is like Eq. 9, where
non-grasp sharing is considered as management element of activity that the natural
process of DSM production line wrecked. From the perspective of DSM manager, the
only cost of DSM manager when such a thing happens is DSM uptime. If two processes
iandjin ¢ = 0 (time) want to access the common area in DSM, the DSM manager
decides about non-grasp sharing following its policies that process j gets suspended.
If there is a need of ¢ time unit for executing the process i, from the perspective of
DSM manager, the maintaining cost of DSM between i and j processes in f time must
be paid. The nature of non-grasp sharing cost is highly dependent on the process
of execution of the program in a computing system. This means that the method
of communication between machines that are the members of a computing system,
the ability of each machine in executing the program and does computing element
which performs subdivisions of activity required to be synchronized with each other
or not? They are effective on the cost of non-grasp sharing. On the other hand, it
should be noticed that despite all activity costs mentioned in the paper, the calculation
of the cost of non-grasp dependency is highly dependent on time. In experiments
performed to investigate non-grasp dependency status, it was recognized that some of
the dependencies appear in a majority of experiments and some others are different
from experiment to experiment. In fact, they are a function of completion time of the
activity that involves the shared data.

This means some non-grasp sharing activities might occur in the specified scientific
program and some non-grasp sharing activities might not occur in other program
running the scientific program. This defines the y8 coefficient. Y8 coefficient shows
the occurrence of non-grasp sharing activity related to processing j in comparison with
total activities related to DSM by process j. In the worst state, this coefficient is equal
to one, and this means that every time process j is using DSM, non-grasp sharing
activity occurs. The information related to the y8 coefficient for each process j from
the data structure of process state and data structure related to memory accessing is
extractable by process j.

This cost can be calculated by data structure related to an operating system that
maintains the running error of process and the data structure related to IPC of out
machine process. This cost is per system call.

Another part of non-grasp sharing is related to waiting process j for ending the mode
of non-grasp sharing. The cost of waiting process j is all system calls, which are the
reason for suspension of process j in performing the global activity of which process
Jj is a part. So, this cost is covering the cost of system call performing that the existed
other processes in a computing system that is for communicating with j process. These
costs can be calculated by data structures related to an operating system that maintains
process execution error and the data structure related to processes communications of
out of the machine.

@ Springer

A mathematical model to calculate real cost/performance... 1745

It should be noticed that waiting time of process j might be very complicated since
it contains communications of process j with a set of processes waiting for process
Jj to finish its task with DSM so that they can resume their activities. In this paper,
for simplicity, it is assumed that wait cost of process j is calculated based on central
processor’s cycles and the importance of process j, which is given by y7.

The y7 coefficient in Eq.9 shows the importance of coefficient of the process in
global activity. If all activities related to process j were global activities in runtime,
this coefficient would be equivalent to one. For calculation of this coefficient, the ratio
of the numbers of global activities on all activities of process j is considered.

Similar to Eq. 7, during the running of non-grasp sharing activity, non-grasp sharing
activity is the only existed activity at the level of the system from the perspective of a
DSM manager. A DSM sub-production line can be considered if there is a computing
element in which process i is running and there are other computing elements in
communication with process i. This system contains another computing element in
which process j is running. In this DSM sub-production line, DSM manager can be
defined. In this sub-production line, the existed process i has activity on DSM. This
process performs a set of system calls that were defined for performing on DSM. The
methods of timing cost can be used for calculating the cost of each system call such
that a cost is considered for each time unit and the cost of the system call is equivalent
to the cost of required time for running the system call.

In a computing system, especially biological computing systems, during the life-
time of DSM manager, probably more than one non-grasp sharing activity can occur.
Equation 9 can be used for calculating the cost of each activity.

3.7 Specifying the relation between effective parameters

To find the sign of parameters in the necessary relation, the indexes to its right side of
Eq.4 are classified into two groups: indexes with either a weak or strong relationship
between them and indexes that have no dependency on each other.

The nature of manufacturing system is such that for extracting the total cost, the
existing sub-costs in the system are being added to each other. Adding the costs with
each other is the normal form of communication between existing sub-costs in a
manufacturing system. The reason that the operator between composing elements is
added in manufacturing systems is due to the nature of cost. In manufacturing systems,
the cost composing elements are extracted in a way to have the lowest amount of
effectiveness with other cost composing factors. This causes each cost to have the
lowest amount of dependency to other costs.

This is true about DSM system. The default operator between composing elements
of DSM using cost is the added element, except the situation in which the dependency
between composing elements of two costs with each other is very strong. So, in the
calculation of the sign between composing elements and the cost of using DSM needs,
there is a need to have enough information about costs composing elements which
cause the costs to have communication with each other.

In the DSM system, the correlation between a constituent parameter of operational
sub-costs is weak. Therefore, the operator that makes the connection between sub-

@ Springer

1746 E. M. Khaneghah et al.

costs with each other is equal to add operator. So, in [63], based on the fact that the
only thing that makes the relation between operational costs is information transfer
element, the relation between constituent costs and operational cost are considered as
sum.

In the DSM system, some special modes can be considered in which the operational
costs are dependent on compatibility and the size of the block. In this situation, the costs
relating to these two contents are as a communicator between the composing elements
of operational costs with each other. The communication between the composing
costs of operational cost occurs through these two costs in which the communication
between composing elements of operational cost is moderate dependence.

So, in constituent costs of operational cost, when the content of data block size
is proposed in any form like block size or data size, the correlations of parameters
between constituent elements of activity costs contents should be checked again. In
this paper, based on the content that the size of data is a content which has been extracted
out of DSM and has come from the process (labors) in DSM composing systems, the
mentioned correlation has not been calculated. It is clear that if the content of data size
is considered as a variable in DSM system in the calculation of operational cost, there
will be a need to calculate the correlation of composing costs of activity cost based on
data size.

Using the content of element that makes the connection between composing ele-
ments of the cost is more complex with respect to activity costs. Surveying nature
of activity costs shows that the factor that creates the correlation between constituent
sub-costs of activity cost is not only dependent on the data block size. The operator
between each sub-cost shows the correlation of these sub-costs with each other.

In this part, it is supposed that based on the total nature of production line and its
composing sub-costs, the add operator shows that sub-costs have a weak correlation
with each other. In this situation, the distribution of the sub-cost elements is normal.
The reason is clear. In a normal distribution, the freedom degree of variables from
each other is unlimited. Therefore, their correlation is weak. On the other hand, based
on the experiments about sub-costs and their correlation effects on each other, it is
obvious that in time of strong correlation between related data and two sub-costs, the
effect of two variables on each other can be described by * operator, and it also shows
that the relation between two variables with each other is nonlinear.

In this paper, the sign extraction method is used based on the data used for specifying
the relation between constituent costs of activity cost. The total cost of using DSM
in a system can be specified based on the given equation in the second part of the
paper, operational costs, the proposed equation in parts 3.3-3.5, and activity costs.
By considering DSM as IPC on a specified distributed computing system, the sign
between constituent elements of the activity cost is set. In this paper, the cost of using
DSM in 300 times has been surveyed. The experiment environment in part 4 has been
described. In these 300 experiments, it is supposed that non-grasp transfer (NGT) and
non-grasp dependency (NGD) costs are actually one cost and activity cost relating to
DSM include non-grasp (NG) and paging overhead cost. The surveyed data in these
300 times experiments are the amount of each of NG cost and paging overhead cost and
total activity cost of using DSM. In these experiments, each of these 300 experiments
shows how NG cost and Paging overhead cost influence total activity cost and their

@ Springer

A mathematical model to calculate real cost/performance... 1747

communication with each other in order to create total activity cost accordingly. The
results of these experiments have shown that these two costs have a strong linear
correlation with each other.

The first activity cost introduced in the paper is paging overhead cost. This cost is
completely dependent on the size of the data segment, and since this is an external
factor, it has a linear correlation with operational costs.

Effective variables on this cost keep the DSM system active and wait for the cost
of processes while paging overhead cost results from data and its size. The only con-
nection between the NG and paging overhead cost is waiting time of the process.
However, waiting in paging overhead cost is different from that in non-grasp depen-
dency. Consideration of data size as an external factor for the paging overhead cost
reveals a weak relation with other costs.

Two non-grasp costs mentioned in the paper have a strong correlation because the
occurrence of one in the system increases the occurrence probability of the other.

Performing ‘n’ observations on DSM production system to extract relation between
non-grasp transfer, dependency and assuming that number of estimators which cal-
culate effects between the two real value generating sub-spaces are equal to some
members of Estimator set, then Estimator set is a set which represents all thinkable
states for math signs. Math signs represent the effects of non-grasp transfer and depen-
dency on each other. Equation 10 can be used to describe this state.

Vi A j so that i A j € {non-grasp Dependency (NGD), non-grasp Transfer (NGT)}
NGD, NGT € DSM can define B; © B; also (© € Rater) (10)

Equation 10 tries to show that per each i and j, which can be member of
{non-grasp Dependency (NGD) , non-grasp Transfer (NGT)} and NGT and NGD be
members of surveyed DSM system, © evaluator can be used for describing costs relat-
ing to i and j. Equation 10 introduces the fact that with a evaluator like © and using the
data relating to NGD and NGT variables, the describer operator of relation between
two variables can be introduced.

Regarding cost-producing nature of non-grasp transfer and dependency and con-
ducted experiments, Estimator = {+, %}. 4+ operator represents weak dependency
and is driven by cost nature of production systems. On the other hand, the * opera-
tor indicates strong effectiveness and existence of nonlinear relation. Now, based on
a concept called real correlation, an estimator is driven out to determine non-grasp
transfer and dependency. This estimator should provide an accurate interpretation of
effects of non-grasp transfer and dependency cost functions.

Considering Ry as an estimator for measuring transfer correlation and non-grasp
dependency and assuming Ry € Rater [NGD — NGT], Og, as observations of NGT

sub-space and O as average of observation set O 7, then deviation of observations
centering on the average, i.e., O is:

> @i == 0i < oxgr (1)

@ Springer

1748 E. M. Khaneghah et al.

— =
On the other hand, O represents regression line, which can be assumed for Oygr
set. According to this fact, deviation of observations (members of Oygr set) that can
satisfy regression line is obtained by Eq. 12.

> (oi - o) oi € onar 12)

In this method, NGT is as affected sub-space:

(NGT — NGD)? = 1 — (Z(oi - ’“0‘)2) / (Z(o,- - 7)>)2> 0; € oNGT

(13)

Zero results in this Eq. 13 show that O; NGT sub-space completely produces under
estimator K effects on NGT. It should be noticed that correlation is always a number
between zero and one. One indicates under estimator Ry, effects on NGT are completely
produced by NGD, and zero indicates under estimator effects on NGT are not com-

——
pletely produced by NGD. However, the correlation will be zeroin case _(0; — O)?
equals Y (0; — —O>)2. This shows that under estimator Ry, the effect of NGT from

NGD sub-space can never be investigated. In DSM production system, the estimator
set is described as below based on observations provided by running MMS5 application
[26], which is rewritten based on a DSM mechanism:

Ratergs = {*, +}

Correlation theory is used to determine which operators, + or *, can better express
the effect of two NGT variables on NGD variable. To recognize which of the two
above estimators can better state the correlation between NGD and NGT and more
accurately determine the effect of NGT variable on NGD, a set of data needs to be
produced.

Therefore, the costs of non-grasp transfer and dependency for a certain DSM pro-
duction system are calculated for a certain number of times for * estimator. Then, the
table is investigated for the + estimator. It means that non-grasp transfer and depen-
dency are calculated while estimator is 4. The results are provided in a table similar
to Table 1.

Table one shows the effectiveness of NGT on NGD when estimator is * or +.
Upon completion of the table for 300 times, the correlation coefficient can be used to
determine estimator.

Table 1 Values of NGT and

. oo
NGD for * and + estimators + estimator estimator
NGT NGD NGT NGD
GDI1 NGT?2 NGD2

ol Laluiil Zyl_i.lbl

A mathematical model to calculate real cost/performance... 1749

Using * as an estimator, the correlation between NGT and NGD is 0.0974 while
if the estimator is +, it will be 0.0862. Therefore, the accurate estimator that can
accurately describe effects of NGT on NGD is *.

It can be proved intuitively. In non-grasp dependency and transfer costs that form
a data block, non-grasp cycles are formed with a higher probability of release of the
block. Therefore, violation of the idle model of DSM production line can increase the
probability of involvement of the data block needed by other processes, such that two
processes may not communicate, but one of the processes is in the non-grasp cycle.
Consequently, the cost of the process would increase. This fact holds inversely as
well, i.e., a cycle may be created merely since a process has a data needed by another
process.

3.8 Calculating the constant coefficient of HPC

As mentioned previously, K is called the HPC system coefficient or HPC constant.
The K HPC constant is defined based on the HPC capacity. K is a value that causes
the relation between the DSM cost and the effective parameters for it to be converted
from a relation to equality and equation.

In this part, relation means Eq. 4.

An HPC coefficient is a number that has been obtained by experiments. To find the
HPC constant, different parameters are considered, as shown below, to calculate HPC
constant.

A. The level of calculations at each unit of time

B. The average number of messages required to set up the HPC system based on the
DSM mechanism

The average number of distributed memories

The average number of blocks associated with the establishment of DSM
Average frequency of request to DSM

Average number of instructions related to IPC out machine

Average number of system calls to memory activity except for DSM

Average time of network communication (convert to cost based on time cost)
Average cost for network communication creation (based on time cost)

Average number of control instructions used by DSM (convert to cost based on
cost system call)

Average number of errors occurred during DSM management process (convert to
cost based on cost system call)

“=TFQmmUn

7~

It was practically shown that none of those above parameters were the missing link in
such a relation to be converted to an equation. From a physical point of view, none of
those above elements may keep the dimension of the obtained relation.

Based on achievements, it was understood that all the items existing in the right side
of the corresponding relation are related to an item known as the HPC size. The level of
non-grasp sharing, non-grasp transfer and the costs of establishment and maintenance
of the HPC are the main parameters that directly relate to HPC size.

@ Springer

1750 E. M. Khaneghah et al.

Table 2 K coefficient values

based on the HPC size K value Size of HPC
0.2 > 1 and < 100
0.5 > 100 and < 1000
0.7 > 1000 and < 10,000
0.9 > 10,000

Nature of production line causes this content. All parameters of production line costs
are dependent on production line implicitly. This is true about activity parameters and
operational parameters.

None of the given equations in this paper says anything about the size of the envi-
ronment and the size of the HPC system. It is, thus, possible that the constant HPC
parameter is complementary to the discussion of parameters affecting the memory
size criteria from the view of DSM manager.

Considering all the concepts mentioned above in practice, the HPC constant is a
concept that first specifies a reality in the HPC systems. Second, it may be able to
protect the given relation dimension, and most important of all, it may change the
status of the relation (Eq. 1) mentioned above and convert it to an equation. Finding
such matter and after ensuring that the parameter listed above is considered as an
effective parameter in the HPC, K coefficient must be recognized by interpolation in
continue.

If the relation between the parameters equal to A be considered, then there is Eq. 14.

Cost of DSM = K * A and K = Cost of DSM /An (14)

To calculate K, a series of DSM costs are also calculated, which there are their values
using the equation and their place in the corresponding relation, and some values for
K is found. HPC system has been described in a previous study [51].

As expected, another K can be obtained for all HPC systems. K is practically
different for HPC systems with different sizes. After finding the various points, in
which the level of the right and left sides of the Eq. 4 were known, such relation
required the assignment of different values to K to be converted into an equation.

Table 2 shows the numbers derived from tests using the extension principle. The
maximum size of the HPC values could not be completed in Table 2 due to resource
constraints at our disposal.

Table 2 has been created based on interpolation pattern. In computing system [51],
the number of machines, which are members of the computing system based on a
hundred coefficient, was increased and with computing the real cost and achieved
cost from Eq. 1. Therefore, coefficient K follows Table 2 with 97% coefficient. It is
important that when the number of machines that is a constituent of computing system
was between 100 and 1000, different numbers gained for k that with experiment 97%
of this numbers are in the limit of 0.5. The real cost in the system [51] is calculated
based on time cost pattern and system call cost. In the calculation of coefficient K, the
focus is based on the size of HPC system; this content implicitly covers the condition

@ Springer

A mathematical model to calculate real cost/performance... 1751

of IPC with the owner of distributed common memory and two processes that are using
the common data in DSM level. On the other hand, in the calculation of coefficient K,
effective environmental and systematic factors on DSM have been considered.

4 Case study

To evaluate the proposed approach for calculation of DSM cost, the P2P system with
the management framework has been followed as described in a previous study [51].
In this P2P system, there are different operational regions including HPC regions. In
these areas, both the IPC mechanisms are used, i.e., DSM and message passing.

DSM mechanism patterns can be converted to message-passing patterns and vice
versa. A two-level out-of-machine IPC structure is used to reach higher computing
performance or less execution cost. This probability is achieved through a concept
called analysis of goodness cost.

The main model and the mentioned conceptual of distributed P2P system as
described by a previous study [52] is based on supply and demand pattern. There-
fore, there are good facilities for analysis of supply cost than demand cost. DSM is
used as a place for supply and demand in distributed P2P system. When a process
wants to access data, creation cost, management, and maintenance cost of DSM as
part of supply cost and in answering time to request, DSM is proposed as part of the
supply cost.

In this system, there is a unit called Communication Manager that is responsible
for changing communication mechanisms. This unit makes decisions in the direction
to reach high performance and reduce execution cost of the application program. It
should be noted that when IPC pattern in the system is same as the communication
pattern used in the application program, Communication Manager is activated in all
machines involved in the execution of the application program. This unit handles
pattern conversion through initialization of DSM and message data structures.

Communication Manager uses a pattern for goodness cost analysis that applies a
concept called balance point as the fair point for the cost in DSM or message mech-
anisms. The most important property of this point is the determination of acceptable
threshold for costs of DSM and message mechanisms. Communication Manager can
determine cost function for using message mechanism based on message production
system concept, in the same way as it is discussed for DSM mechanism in the present
paper. Accordingly, it can calculate message production system cost function.

The main goal of Communication Manager is to analyze balance point of both DSM
and message production systems. For this, it defines a concept called regional payment
that completely depends on the identity of the region and is a function of two concepts.
The first concept is a cost for using member machines of a region system-wide, and
the second concept is the acceptable time for execution of application program on
computing region.

Using member machines of a computing region in distributed systems is a concept
that points to the fact that due to the geographical and administrative expansion of
these systems, many of member machines of the computing region may not be present
in the administrative domain of the executing machine that requires computing power.

@ Springer

1752 E. M. Khaneghah et al.

Communication Manager converts these costs based on a unit that calculates the cost
of DSM or message systems. On the other hand, the execution time of an application
program that requires high performance can be calculated and estimated.

The simplest way is based on a set of environmental parameters. Communication
Manager considers a cost unit for a time unit. The sum of these costs is considered as
total sufficient time cost for executing the application program. The two mentioned
costs are considered as payment from the system point of view. These two costs are
because the user of computing regions of the distributed P2P system should pay to use
the mentioned computing system.

It should be noticed that these two costs are considered as negative costs for Com-
munication Manager, who considers these costs as its inputs. In addition, it is assumed
that the elements using computing region should pay them as payment of Communi-
cation Manager.

Communication manager can analyze balance point in a more detailed manner.
Analysis of this position determines how costs of the production system including
either DSM or message production system, in addition to other costs of the application
program, should be in order for the total cost of the system to be equal to the total
payment.

Total cost from this unit point of view includes both fixed and variable costs. Fixed
costs include costs that do not vary with the usage of existing machines in a region,
and variable costs include costs that vary. Thus, they are presented as follows:

e () represents time or computing, and processing power is given to a requesting
machine.

e P cost of each time unit or computing and processing power unit.

e [total fixed cost per execution of application program.

e V variable cost per computing and processing power or time unit.

It should be noticed that Communication Manager calculates total costs and payments
to the system based on calculations of the application program production line system.
Total payment and cost are equal to (Q * P) and F + (Q * V), respectively. Regarding
this issue, the balance point is reached when the following Eq. 15 holds as follows:

OxP=F*(QxV) (15)

It should be noticed that code segment of an application program, which requires
computing and processing power except parts that perform global operations is con-
sidered as a fixed cost. It is assumed in the paper that only IPC instructions perform
global operations, and thus, all instructions except DSM/message are considered as
fixed costs.

Assuming that system is investigated when the P2P system resides instability, and
consequently, regions are fixed, and the payment is also fixed. In this case, in bal-
ance point equation, only IPC-related instructions are considered as variable costs.
Therefore, in balance point equation, DSM or message-related costs are discussed as
unknown part of the equation.

The equation is calculated for DSM production system. As mentioned earlier, a cost
in DSM production system is either operational or activity. Operational costs are not

@ Springer

A mathematical model to calculate real cost/performance... 1753

a function of time. On the other hand, many parameters in operational costs discussed
in the equation for DSM operational costs are not a function of machines involved
in the execution of DSM based application program and are considered for a DSM
production system.

Although some parameters including the amount of transferred data per usage of
DSM and cost of DSM management software license are related to some machines in
the system, these parameters should vary based on the level of involved machines in
the DSM program execution.

For simplicity of calculations, it is assumed that the size of DSM production system,
while active in the region, is a fixed and constant number. Although the proposed
equation for cost and the mentioned method can be generalized for imbalance eras, it is
merely necessary to divide variable parameters, which are based on some sophisticated
machines in solving the problem from parameters that are not affected by the numbers
in machines.

These parameters should be considered as part of parameters producing variable
cost. In the mentioned distributed P2P system, DSM mechanism is implemented at the
kernel level and is the concept of extending data structures used in out-of-cluster IPC
mechanisms and memory management for managing DSM based out-of-HPC IPCs.
Both the above-mentioned mechanisms make use of local operating system units for
DSM management.

It is assumed that the operating system used in member machines in the region is
Linux, with page size taken as 4096 with a good approximation. The software used for
DSM cost calculation is matrix multiplication. Having another look at the proposed
equation, PAGESIZE, Number of DM, Average Cost of each unit, Number of Nodes,
DSM license per node and Setting up cost are considered as fixed costs and all other
parameters are variable costs, which are dependent on execution.

However, in experiments of this part, the mentioned costs are considered as fixed
costs. But if there would be more than one global activity in a computing system in
the described P2P system, the mentioned costs can be calculated as per each global
activity separately. This separate calculation will not do any damage in the experiment.

The first variable is Size of Data should be transferred. An experiment was con-
ducted with matrix multiplication for 50-time units on 10 machines. During the
experiment, 2—10 machines may be used for execution. Figure 2 shows the total amount
of data transferred throughout DSM system per time unit.

Investigating the conducted experiment, one can notice data transmission during
experiment execution is a function of the followings: (a) number of machines associ-
ated with DSM production system; and (b) type of machine, computing, and processing
power of the machine, and the pattern for converting sequential matrix multiplication to
parallel matrix multiplication that plays an important role in the amount of transferred
data in DSM production system.

What is of high priority for cost calculation of DSM production system is the pro-
duction of information transmission pattern based on time. To extract this relation,
firstly, unrelated data should be removed, and secondly, the relation between existing
information should be driven out. Regression is considered as a solution to both require-
ments. Finally, the equation Data Transfer Size = —0.2511> +11.995¢ + 1202.9
is produced.

@ Springer

1754 E. M. Khaneghah et al.

Data Transfer

2500
~ 2000
=]
: A |
< =0. . .
; 1000 \ \ ¥ Data Transfer
s U \IV V v UV V\ — Poly. (Data Transfer)
& 500
0 T
1 4 71013161922252831343740434649

Time (t)

Fig. 2 The amount of transferred data in DSM production system on time

Availability of Machine 2

1.20
1.00

0.80 \ NM A
0.60 LA/N— _o.o(l)yx2+o.b&7\m E13'\ ~——Possibility

o /V U ' L\ \ —— Poly. (Possibility)
0.20 yv

0.00 T T T
14 71013161922252831343740434649

Number of Times

Availability of Machine 2

Fig. 3 Availability of machine 2 in the matrix multiplication DSM production system

Repeating the experiment shown in Fig. 2, one can interpret that in DSM produc-
tion system relational pattern introduced between the amount of transferred data in
DSM and time is repetitive. The difference between various experiments is in the
intercept of the function that states the relation between the amount of transferred
data in DSM and time. The main reason for the difference in intercepts of functions
is due to the distribution pattern and distribution method of matrix multiplication
program.

Another time variable is Average Run Cost. This is a dependent variable with
some independent variables because costs like consumed energy, the cost of operating
system and cost of system and management software running on the local machine
are considered as costs of this variable.

In the evaluation, without discussing details of sub-costs, it is assumed that a total
execution costin machine ithis equal to Cost;;. However, Average Run Cost in comput-
ing and processing system is dependent on activation of DSM. Matrix multiplication
experiment is repeated with the mentioned conditions. Figure 3 shows the probability
of the existence of a machine in DSM production system.

Figure 3 shows existence probability of machine 2 for different executions of matrix

probability of machine 2 is low in some
o & S] g

others, the probability is a number close

A mathematical model to calculate real cost/performance... 1755

to one. In this experiment, the lowest and highest limits are considered as 0.3 and
1, respectively. This means available machines in this range are in DSM production
system.

To remove undesired data and reduce the effect of experiment’s conditions and oscil-
lations caused by them, regression is used. The equation obtained for the probability
of the existence of machine 2 in DSM production system based on some repetitions of
execution of the program is in the form Number of Times = 0.0001z> —0.0095¢ +
0.6242. Repeating experiments for a certain number of times and the difference in
goodness equations is in intercepts. Differences in intercepts of DSM operation ini-
tiating machine state the existence or non-existence of machine number 2 in DSM
production system. Finally, for any machine like machine number, the proposed equa-
tion can exist for calculation of DSM cost as follows:

Average Run Cost = 0.000172 — 0.00957 + 0.6242 % Cost;n (16)

Another time variable is Size of Control Message. This variable has a direct relation
to some transferred messages sent throughout DSM production system to control
production line.

One can calculate the number of cost units for the cost of transmission of a single unit
of data. This cost is a complex cost, which includes the cost of network establishment,
network protocol and required energy for the network. By nature, both The size of
Control Message and Data Transfer Size variable are the same. However, they differ
firstly in size, in which Size of Control Message is much smaller with respect to the
amount of transferred data by memory units. Secondly, this variable happens when a
specific event occurs in the system or a certain amount of time is passed.

Matrix multiplication experiment is repeated to extract the relation between Size
of Control Message with time. The experiment is performed using both DSM and
message mechanisms.

Figure 4 represents some occurrences of control messages in DSM and message
production systems for 50 times experimental repeats.

Number of Control Messages in DSM and MP
70

60

o ﬁ Vlﬁll“lllllﬂ" B

Message
20 -

0 T T T T T T T T
1 4 7 10131619 222528 3134374043 46 49
Number of Control Messages

Number of Control Messages

lated to DSM and message production (MP)

EEN T fyl_i.lsl Qs

1756 E. M. Khaneghah et al.

2000
1800
1600 A
= 1400 - Size of Data Message
=
T 1200 -
E 1000 - Size of total Data
Transfer
.“,;,’ 800 -
Y 600 ¥ V Size Control in Message
400 ‘-/\VA I A pa \\
200 £ /2\ N \’\ AN ——Poly. (Size of Data
0 T Message)
T T T T T T T T T
1 3 5 7 9 1113151719 212325
Time (t)

Fig. 5 Total data transferred and amount of control data in DSM and message production systems

As shown in Fig. 4, the amount of control data that is required by DSM mechanism
is larger with respect to message mechanism due to abstraction provided by DSM
mechanism.

This mechanism needs larger amount of data to provide users with abstraction and
control data transmission in the system. The Communication Manager can use the
relative number of occurrences of control messages as a useful tool to recognize the
importance of this type of messages in DSM production system.

In Fig. 5, some control messages along total data transferred during 25-time units
of the experiment are presented.

As shown in Fig. 5, except three plots, the total amount of data transferred in
DSM production system is 3-5 times bigger with respect to control data used in
this production system. This can represent the importance of coefficient of control
messages in DSM production system.

As shown in Figs. 4 and 5, in some repetitions of the experiment, the occurrence
pattern of control messages oscillates. This oscillation is due to the occurrence of
control messages inside the system to hold the basic rule of DSM production system.
In addition, it can be due to the occurrence of an event inside a local operating system
that is out of control of DSM system.

Using regression to calibrate results, Size of Control Message = 0.1619t% +
3.5951t + 54.273 is reached. In the repeating experiments shown in Figs. 4 and 5,
one can find out that regression equations differ in intercept, which is an initial
condition. Regarding this fact, the Communication Manager calculates the cost of
Size of Control Message using its time relation equation. For this to happen, the
cost of a single time unit (including energy costs and network costs) for sending
a control message when the system is active is calculated, and based on the given
equation for control messages cost in DSM production system, decisions can be
made.

It should be noted that one of the main challenges of production lines is considering
control messages and their role and importance in production systems. However, since

hey need a short time to fulfill and use the existing executive data transfer platforms
considered as a dependent cost.

A mathematical model to calculate real cost/performance... 1757

Number of Memory Confilicts of Machine 2 at the System

12.0
10.0
8.0 1 I
% 6.0 N l 1) A I 1 Mem Confilict (time)
E . waiting (time)
40 P4 = i ——Poly. (Mem Confilict (time))
y= Q’SOC x2% 0103 3 i —Poly. (waiting (time))
‘ I || H |
0.0 -

9558910851083 61894103285
Number of Confilicts

Fig. 6 The occurrence of data inconsistency in machine 2 and waiting time due to the business of local
DSM management and local resource management systems

Figures 4 and 5 indicate that control messages in DSM take longer and a more
significant time on message production system. However, this type of messages should
be considered in DSM since an effective part of properties of DSM production systems
is provided by these messages, i.e., abstraction for users. Thus, they should be regarded
as a dependent cost in such production systems.

Another time variable parameter is Consistency Cost. In the context of production
systems, this parameter has appeared with the name quality of the produced piece;
however, in the real world, this parameter is caused by data consistency concept or
basic rule of the production line.

In this paper, consistency is assumed as strict consistency. The cost calculation is
done via two methods, i.e., whole and single element method of the scheme. When
calculating this cost completely, the system method events that violate the basic rule of
the production line are collected, and based on the cost of the element, which recovers
the system to a consistent state, consistency maintenance cost of the production line
is calculated.

In the single element method, for each constituting element of DSM production sys-
tem, some occurrences that disconnect local element with other elements are counted,
and cost of removing these oscillations is calculated. It should be noted that the first
method is suitable for computing and processing systems using central machines and
the second one is suitable for distributed computing and processing systems.

Matrix multiplication program is executed in case local machines are running activ-
ities with high frequency in the modifying memory. The output of the experiment
represents the highest limit for the cost of data consistency maintenance in the pro-
duction line.

Figure 6 shows some occurrences of consistency violations in machine 2 in 100-
time units. The dependent variable in this figure shows time spent by memory to
recover data and system process inconsistency.

As shown in Fig. 6, upon the occurrence of violation in machine 2, the local memory
i in ti During this time, the local memory management
to recover from inconsistency.

@ Springer

1758 E. M. Khaneghah et al.

Number of Memory Confilicts of Machine 2

Locall
12 Y

E 10 I

T \ [uph | A

% 6 \ ’ \ A ‘nl,L - Number Confilict in
=4 Local System I

é 2 I ! U ! : V — Log. (Number Confilict
2 0 4 ! in Local System I)

1 6 1116212631364146515661667176
Time (t)

Fig. 7 Some occurrence of data inconsistency in machine 2

It should be noted that in this case, the reason behind such inconsistency remains
unknown to local memory management process. Some process merely reports the
occurrence of this inconsistency in machine 2.

The reporting process is a part of DSM management. On the other hand, the incon-
sistency that occurred in the local machine may lead to a system process, which is a
part of the operating system’s kernel and is in charge of local machine’s resources into
the busy state. However, upon activation of either system management units or DSM
management unit, the communication manager can calculate conflict cost inside the
local machine.

Figure 7 shows the logarithmic relation between occurrences of data inconsistency
in machine 2 and system time.

As shown in Fig. 7, there is a logarithmic relation between numbers of occurrences
of inconsistency in machine 2 at the time of the system process xxx. Another reason
for these oscillations would be called the role of machine 2 in DSM production system
and whether this machine has had an activity finishing role in the system or not.

To remove these oscillations, regression is used and finally conflict = 0.3204/n(t)
+4.6663 would be produced by the equation, which states the relation between some
data inconsistencies and time in machine 2. This equation cannot be considered as
part of DSM costs since it has a numerical nature.

On the other hand, in Fig. 7, variable conflict has been shown without considering its
role in the cost of using DSM. Communication manager unit can use each a cost factor
of DSM management in local machine or factor cost of local machine management
factor. In this paper, the cost of DSM management factor has been used on the local
machine.

If we take a look at the two existing regression equations in Fig. 6, it is obvious that
the difference between two regression equations is equal to y = 0.8764 — 0.0448x +
0.0006x"2. Time factor in mentioned function is cost because the cost factor can be
calculated per each time unit, Therefore:

0.0006Cost Confiticr.2 A 2 + 0.0448Cost Conticr.2 = 0.32041n (1) + 4.6663 (17)

ency maintenance in machine 2 and simi-
system can be produced.

A mathematical model to calculate real cost/performance... 1759

The other two time variables are non-grasp variables. Using graph theory and by
calculating the cost of a path in a graph, the non-grasp variable cost is calculated.

Therefore, each edge in transfer graph is assigned a number called waiting for a
cost that shows the cost of idle time of a machine between the two machines. On the
other hand, another number called uptime cost is assigned to each edge. This number
represents activation cost of DSM between the two machines.

The two mentioned costs of the formation of non-grasp transfer graph are used as
the generator cost of this graph. The result of calculation of two mentioned cost is
always considered as a fixed number obtained from timing nature of the non-grasp
transfer. Although waiting cost and uptime cost are timing nature costs and have
different values during the time, they always become a fixed cost after calculation.
The reason of such thing in graph and calculation of graph cost in non-grasp transfer
and the existence of sigma in non-grasp transfer is due to the change in the mentioned
costs to timing fixed costs. Non-grasp transfer cost has been obtained for each edge
based on whole costs of waiting time and uptime. If taking a look at computing element
nature of the non-grasp transfer, it is clear that these computing elements are kind of
fixed costs elements, which are calculated per specified period. Calculating the graph
edges cost per specified period showed existence of non-grasp transfer graph that
causes cost creation. About non-grasp dependency, the calculation of existed sigma
in non-grasp dependency causes the cost of sigma per specified period to change
to a fixed cost. An important aspect of two non-grasps is its importance in DSM
cost. So, the communication manager unit calculates the possibility of occurrence of
non-grasp in DSM, which shows the coefficient of each non-grasp costs in DSM. It
is important that communication manager unit calculates DSM costs based on time
unit. In other words, this will calculate time cost, about each constituent sub-cost
and DSM manufacturing cost. Hence, the cost of each unit is calculated by time,
and then functions, which expresses the constituent sub-costs of DSM system cost
that is calculated based on time. The reason of this comes from defining the content
of variable costs in communication manager unit. So, communication manager unit
presents cost function equation as follows:

Cost Function = Fix Cost + Cost(t)| t defines for each sub cost function ~ (18)

Based on Eq. 18, the communication manager makes decisions about the cost of DSM
production system or any other communicating system. On the other hand, upon con-
version of the time-independent variable to a time unit and by calculating implicit
derivation, communication manager can make decisions about points causing mini-
mum or maximum cost in DSM or costs by which elements increase the total cost of
DSM production system.

5 Conclusions
This paper presents some mathematical methods to calculate DSM real cost in software

DSM on computing environments. The parameters affecting the cost were specified,
and a cost model for DSM was proposed.

@ Springer

1760 E. M. Khaneghah et al.

With this model, DSM real cost and program execution cost in HPC systems can be
calculated. This method has obtained a base on the concept of cost in accounting and
management sciences (product line cost calculating) to get a real method to calculate
the DSM cost.

To make these parameters flexible, parametric weight coefficients were defined,
and further, the relations between these parameters were described. Then, the
cost/performance ratio can be calculated and used as an estimator to choose suitable
DSM mechanisms if costs of other IPC mechanisms are known.

One of the significant challenges in designing and programming of the scientific
applications is to calculate program execution cost. Depending on the volume of com-
munication between the processes, in scientific applications, the cost of the underlying
communication mechanism is an influential factor in calculating the total cost.

In biological computing systems like Grid and P2P, computing elements are on
internet network. System manager does not have any precise vision about computation
elements status and how they have IPC. In a time of resource discovery and finding
computation element that can meet the requests of global computation activity, if out
machine IPC mechanism is expensive, the ratio of cost/performance of such systems
become meaningless.

The IPC cost in HPC systems, especially in biological systems like Grid and P2P,
is unclear. In computing systems, IPC cost opposites to hardware costs and scientific
program creation, and producing costs is a complex that part of it follows the operation
cost pattern and heft of it follow the activity cost pattern.

DSM mechanisms are commonly used for transmitting large and complex data
structures in scientific and engineering problems.

The nature of the activity and DSM communication cost cause this cost to follow
up how the program executes and the performance of environment and system. So,
if there would be any vision about the nature of costs of IPC mechanism, system
designers could decide about the feasibility of a special kind of HPC system (Cluster,
Grid, P2P, and Cloud computing).

In this paper, based on a systematic method and equivalency between production line
system and DSM, activity costs and operation costs of DSM are described. According
to the selected core activity, activity costs are proposed as false sharing cost, page
transfer overhead cost, and paging overhead cost.

These parameters can be considered as DSM abstract features for this purpose, and
a method to analyze the effect on DSM real cost is presented by modeling them and
finding the costs effects between them, and how that affects the final cost.

Layer pattern is used in the calculation of activity cost related to DSM. This means
each of the events causes the basic and core activity getting out of natural and normal
mode that is considered as an atomic activity, which, from the perspective of DSM
manager, is the only cost of DSM production line manager saving. The activities of
the part of DSM manager for bringing back the DSM production line to its natural
process are considered for the calculation of exact cost. If the nature of implementation
of DSM manager were such that it could manage the events like consistency and false
sharing more than two layers, this model would be acceptable.

Based on the nature of activity costs in the extraction of effective factors on cost,
the effects of environment and system were taken into consideration. Therefore, in

@ Springer

A mathematical model to calculate real cost/performance... 1761

surveying the cost of necessary activities for DSM production line to come back into
basic and core activity, the cost of the out of DSM system activities like the cost for
process maintenance or the cost of data compatibility is considered suspended.

For increasing the accuracy, the gained costs and the coefficient for the impact of
actual situation (condition of running time of program on DSM) are proposed for
calculation of those in real time, using time cost (considering a cost for each time
unit) and system call (considering cost for executing each system call in operating
system level) being used. The information is related to the calculation of DSM cost
based on information of data structures of the operating system before extraction and
calculation.

Based on the nature differences of closed computing systems like Cluster and
biological computing systems like P2P and Grid, the differences of calculation of
cost for each of them was proposed when describing the equations. However, because
of proposing a general equation, calculation patterns for Cluster systems costs and
calculation of the parameters in computing systems have been described. The model
is examined by a case study on a distributed P2P system platform.

A special feature of a P2P computing system is the creation of a system based
on supply and demand; this feature causes the calculation of real cost (the cost of
execution) as DSM is considered as a place for supply and demand. This method of
cost calculation causes a pattern for calculating the main coefficient to be presented.
This P2P computing system can be used as a cluster computing system because of
supporting a concept called area calculation. The process for calculating the cost of
using from DSM in a distributed P2P computing system is expressed for examining
the model.

The expressed model in this paper provides this ability for management element
of a computing system to calculate the cost of using DSM and considering the envi-
ronmental factors and also inner-system factors on DSM cost parameters that whether
they can decide about using DSM for IPCs or not.

References

1. Expdsito, RR et al (2013) Running scientific codes on Amazon EC2: a performance analysis of five
high-end instances. J Comput Sci Technol 13:153-159

2. Al Geist, Reed DA (2017) A survey of high-performance computing scaling challenges. Int J High
Perform Comput Appl 31(1):104-113

3. Thackston R, Fortenberry R (2015) High performance computing: considerations when deciding to
rent or buy

4. Zhang, Z, Cherkasova L, Loo BT (2014) Optimizing cost and performance trade-offs for MapReduce
job processing in the cloud. In: 2014 IEEE Network Operations and Management Symposium (NOMS).
IEEE

5. Kurmann C, Rauch F, Stricker TM, (2003) Cost/performance tradeoffs in network interconnects for
clusters of commodity PCs. Workshop on Communication Architecture for Clusters, Nice, France

6. Rauber T, Riinger G (2013) Parallel programming: for multicore and cluster systems. Springer, Berlin

7. Tootaghaj DZ et al (2015) Evaluating the combined impact of node architecture and cloud workload
characteristics on network traffic and performance/cost. In: 2015 IEEE International Symposium on
Workload Characterization (IISWC). IEEE

8. Adams M (2014) HPGMG 1.0: a benchmark for ranking high performance computing systems

@ Springer

1762 E. M. Khaneghah et al.

10.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.
31.
32.
33.
34.

35.

36.

. Sukharev PV et al (2017) Benchmarking of high performance computing clusters with heterogeneous

CPU/GPU architecture. In: IEEE Conference of Russian Young Researchers in Electrical and Electronic
Engineering (EIConRus). IEEE

Dongarra J, Heroux MA, Luszczek P (2015) HPCG benchmark: a new metric for ranking high perfor-
mance computing systems. Knoxville

. Al-Roomi M et al (2013) Cloud computing pricing models: a survey. Int J Grid Distrib Comput

6(5):93-106

Bhowmick A, Prasad CGVN (2017) Time and cost optimization by grid computing over existing
traditional IT systems in business environment. Int J 5:93-98

Han R et al (2014) Enabling cost-aware and adaptive elasticity of multi-tier cloud applications. Future
Gener Comput Syst 32:82-98

Nufiez A, Merayo MG (2014) A formal framework to analyze cost and performance in map-reduce
based applications. J Comput Sci 5(2):106-118

Tosup A et al (2011) Performance analysis of cloud computing services for many-tasks scientific
computing. IEEE Trans Parallel Distrib Syst 22(6):931-945

Menascé D, Almeida V (1990) Cost-performance analysis of heterogeneity in supercomputer archi-
tectures. In: Proceedings of Supercomputing’90. IEEE

Marathe A et al (2013) A comparative study of high-performance computing on the cloud. In: Proceed-
ings of the 22nd International Symposium on High-Performance Parallel and Distributed Computing.
ACM

Garg SK, Versteeg S, Buyya R (2013) A framework for ranking of cloud computing services. Future
Gener Comput Syst 29(4):1012-1023

De Alfonso C (2013) An economic and energy-aware analysis of the viability of outsourcing cluster
computing to a cloud. Future Gener Comput Syst 29(3):704-712

Kaplan R, Anderson SR (2013) Time-driven activity-based costing: a simpler and more powerful path
to higher profits. Harvard business press, Boston

Tahir M et al (2016) Framework for Better Reusability in Component Based Software Engineering. J
Appl Environ Biol Sci (JAEBS) 6:77-81

Fenton N, Bieman J (2014) Software metrics: a rigorous and practical approach. CRC Press, Boca
Raton

Berriman GB et al (2010) The application of cloud computing to astronomy: a study of cost and
performance. In: Sixth IEEE International Conference on e-Science Workshops. IEEE

Deelman E et al (2015) Pegasus, a workflow management system for science automation. Future Gener
Comput Syst 46:17-35

Yan Z et al (2011) Cloud versus in-house cluster: evaluating Amazon cluster compute instances for
running MPI applications. In: State of the Practice Reports. ACM

Woitaszek M, Tufo HM (2010) Developing a cloud computing charging model for high-performance
computing resources. In: IEEE 10th International Conference on Computer and Information Technol-
ogy (CIT). IEEE

Aviram A et al (2012) Efficient system-enforced deterministic parallelism. Commun ACM 55(5):111-
119

Otley D, Emmanuel KMC (2013) Readings in accounting for management control. Springer, Berlin
Schoner G (2013) Dynamical systems thinking. In: Handbook of developmental systems theory and
methodology, p 188

Drury CM (2013) Management and cost accounting. Springer, Berlin

Deegan C (2012) Australian financial accounting. McGraw-Hill Education Australia

Lian X et al (2015) Cache coherence protocols in shared-memory multiprocessors

Lenoski DE, Weber W-D (2014) Scalable shared-memory multiprocessing. Elsevier, Amsterdam
Qura-Tul FASN, Khan AKDMS (2015) Development of cluster computing—a review. Development
5(1):1-9

Satish N et al (2012) Can traditional programming bridge the ninja performance gap for parallel
computing applications? ACM SIGARCH Computer Architecture News, vol 40, no 3. IEEE Computer
Society

Menezo LG, Puente V, Gregorio J-A (2015) Flask coherence: a morphable hybrid coherence protocol
to balance energy, performance, and scalability. In: 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). IEEE

@ Springer

A mathematical model to calculate real cost/performance... 1763

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.
61.

62.

Serrano Gémez M (2013) Scheduling local and remote memory in cluster computers. Dissertation,
Editorial Universitat Politécnica de Valencia

Behrends R et al (2016) HPC-GAP: engineering a 21st-century high-performance computer algebra
system. Concurr Comput Pract Exp 28(13):3606-3636

Kasahara H et al (2012) Method for controlling heterogeneous multiprocessor and multigrain paral-
lelizing compiler. US Patent 8,250,548, 21 Aug

Marongiu A, Benini L (2012) An OpenMP compiler for efficient use of distributed scratchpad memory
in MPSoCs. IEEE Trans Comput 61(2):222-236

Engle C et al (2012) Shark: fast data analysis sing coarse-grained distributed memory. In: Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data. ACM

Cruz EHM et al (2014) Dynamic thread mapping of shared memory applications by exploiting cache
coherence protocols. J Parallel Distrib Comput 74(3):2215-2228

Habel R, Silber-Chaussumier F, Irigoin F (2013) Generating Efficient Parallel Programs for Distributed
Memory Systems. Technical Report CRI/A-523, MINES ParisTech and Télécom SudParis

Sim J et al (2012) A performance analysis framework for identifying potential benefits in GPGPU
applications. ACM SIGPLAN Notices, vol 47, no 8. ACM

Kaashoek MF (2015) Parallel computing and the OS. SOSP History Day 2015. ACM

Bericht T, Darmstadt TH, Informatik F, Theel OE, Fleisch Br D (1996) A dynamic coherence protocol
for distributed shared memory enforcing high data availability at low costs. IEEE Trans Parallel Distrib
Syst 7(9):915-30

Yuan D et al (2014) Simple testing can prevent most critical failures: an analysis of production failures
in distributed data-intensive systems. In: 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14)

Medya S, Cherkasova L, Magalhaes G, Ozonat K, Padmanabha C, Sarma J, Sheikh I (2016) Towards
performance and scalability analysis of distributed memory programs on large-scale clusters. In: Pro-
ceedings of the 7th ACM/SPEC on International Conference on Performance Engineering. ACM, pp
113-116

He S et al (2013) A cost-aware region-level data placement scheme for hybrid parallel i/o systems. In:
IEEE International Conference on Cluster Computing (CLUSTER). IEEE

Susmit B (2014) The software architecture for efficient distributed interprocess communication in
mobile distributed systems. J Grid Comput 12(4):615-635

Sharifi M, Mirtaheri SL, Khaneghah EM (2010) A dynamic framework for integrated management of
all types of resources in P2P systems. J Supercomput 52(2):149-170

Khaneghah EM (2017) PMamut: runtime flexible resource management framework in scalable dis-
tributed system based on nature of request, demand and supply and federalism. US Patent 9,613,312,
4 Apr

Musial P, Nicolaou N, Shvartsman AA (2014) Implementing distributed shared memory for dynamic
networks. Commun ACM 57(6):88-98

Kim J, Vaidya NH (1997) A cost model for distributed shared memory using competitive update. In:
Fourth International Conference on High-Performance Computing, Bangalore, India

Gray J (1988) The cost of messages. In: Proceedings of the Seventh Annual ACM Symposium on
Principles of Distributed Computing, Toronto, Ontario, Canada

Kim J-H, Vaidya NH (1997) A cost model for distributed shared memory using competitive update.
In: Proceedings of Fourth International Conference on High-Performance Computing. IEEE

Li S et al (2015) An extensible framework for predictive analytics on cost and performance in the
cloud. In: International Conference on Cloud Computing and Big Data (CCBD). IEEE

Dave VS, Dutta K (2014) Neural network based models for software effort estimation: a review. Artif
Intell Rev 42(2):295-307

Hassan HA, Mohamed SA, Sheta WM (2016) Scalability and communication performance of HPC on
Azure Cloud. Egypt Inform J 17(2):175-182

Midgley G (ed) (2003) Systems thinking. Sage, London

Thiim T et al (2014) A classification and survey of analysis strategies for software product lines. ACM
Comput Surv (CSUR) 47(1):6

Metzger A, Pohl K (2014) Software product line engineering and variability management: achieve-
ments and challenges. In: Proceedings of the on Future of Software Engineering. ACM

@ Springer

1764 E. M. Khaneghah et al.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.
74.

75.

Sharifi M, Tirado-Ramos A, Khaneghah EM, Mirtaheri SL (2010) Formulating the real cost of dsm-
inherent dependent parameters in HPC clusters. In: SMTP workshop in conjunction with the IEEE
International Parallel & Distributed Processing Symposium (IPDPS 2010), 19 April

Power R (2014) Abstractions for in-memory distributed computation. Dissertation, New York Univer-
sity

Vasava, HD, Rathod JM (2015) Software based distributed shared memory (DSM) model using shared
variables between multiprocessors. In: International Conference on Communications and Signal Pro-
cessing (ICCSP). IEEE

Maosen H, Wei H, Huang Y (2016) Enabling mobile device coordination over distributed shared
memory. In: IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS).
IEEE

Pelley S, Chen PM, Wenisch TF (2014) Memory persistency. In: 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA). IEEE

Alglave J, Maranget L, Tautschnig M (2014) Herding cats: modelling, simulation, testing, and data
mining for weak memory. ACM Trans Program Lang Syst (TOPLAS) 36(2):7

Ghosh S (2014) Distributed systems: an algorithmic approach. CRC Press, Boca Raton

Kaxiras S et al (2015) Turning centralized coherence and distributed critical-section execution on their
head: a new approach for scalable distributed shared memory. In: Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing. ACM

Das D, Ray RS, Ray UK (2016) Implementation and consistency issues in distributed shared memory.
Int J Comput Sci Eng 4(12):125

Dulloor S R et al (2014) System software for persistent memory. In: Proceedings of the Ninth European
Conference on Computer Systems. ACM

Low Y et al (2014) Graphlab: a new framework for parallel machine learning. arXiv:1408.2041
Javanbakht Z, Ochsner A (2017) Introduction to Marc/Mentat. In: Advanced finite element simulation
with MSC Marc. Springer, Cham

Shrivastava A et al (2016) Automatic management of software programmable memories in many-core
architectures. IET Comput Digit Tech 10(6):288-298

http://arxiv.org/abs/1408.2041

Journal of Supercomputing is a copyright of Springer, 2018. All Rights Reserved.

www.manharaa.com

	A mathematical model to calculate real cost/performance in software distributed shared memory on computing environments
	Abstract
	1 Introduction
	2 Related works
	2.1 Review of distributed shared memory based on system approach
	2.2 General parameters of cost in DSM system based on system approach
	2.3 Real cost of DSM-inhere dependent parameters
	2.3.1 DSM-inhere dependent parameters

	3 Real cost of application-specific dependent parameters
	3.1 DSM operation and activity measurement units
	3.2 Assumptions for calculating application-specific depends on parameters
	3.3 Model to calculate activity cost in DSM
	3.4 Paging overhead cost
	3.5 Page transfer overhead cost (multi-access event) known as DSM consistency as maintenance cost
	3.6 False sharing cost
	3.7 Specifying the relation between effective parameters
	3.8 Calculating the constant coefficient of HPC

	4 Case study
	5 Conclusions
	References

